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Abstract: The propagation of an elastic pulse through the simple 

geometric forms, rodi, and plates, is investigated from a theoretical 

point of view with the aid of the small-motion dynamic elastic equations 

of an i3otropic, homogeneous, dissipationloss 3oiid. 

The investigation is restricted to disturbances which ore initially 

plane-wave pulseo of dilatation, and formal solutions are developed by 

Fourier transform roetl^ods (symmetric and one 3ided).  The resulting 

formal solutions are developed into infinite series, the terms of which 

represent the total contribution of wave-groups which can be associated 

with the paths of minimum transit time predicted by ths msthods of 

geometrical optics. 

These paths, and the associated wavy groups, are found tc be 

characterised by two integers n, and n., which represent the number 

of times the thickness of the plate (or iiamet-er of the rod) has been 

traversed a.3 a dilatational wave and as a rotational wave respectively. 

The variety in these t>aths i« foun«3 to r«-;ui'. from conversions of 

dilatational. wave energy to rotational wave energy at the  free surfacss. 



Whsn the Poisson ratio, & , is zero, this conversion effect does not 

exist for the disturbances considered, and ali of the energy is carried 

by the direct dilatational wave (n, » n_ • 0). 

The terms of these series are simplified by contour deformation 

methods and are found to represent transients with the minimum transit 

timet Dredicted by the methods of geometrical optic*?  In the case of 

the plate, the simplification enables one to carry out finite numerical 

integrations in obtaining quantitative data on the pulse shape and 

amplitude of the disturbances associated with any specific: values of 

n, and n • 
1     2 

Various interference effects are found between these wave-groups 

as t-#,°°and/or the distance of transmission -r o°.  It is shown that 

these wave-groups interfere in such a way that the total disturbance 

becomes asymptotically a plane wave travelling with the velocity 

predicted in the classical theories of thin plates and rods. 

A comparison is made of these theoretical considerations and the 

experiments reported by Hut,ht:n, Pondrom and Mims, and their failure to 

identify any wave groups other than tho3e corresponding to the direct 

dilatational and critical an^le paths (all of which have n, - 0) is 

explained. 

D. 5. Hughes, W. L. Pondrom, and R. L. Minis, Ph^s. flev. 75> 
15>^ - 1556, (1949). 
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I.  INTRODUCTION 

In a rscent paper* Hughes, Pondrora, and Kims have described a quick 

0. S. Hughes, W. I*. Pondroa, and R. L. Hias, Phys. Rev. 75, 
1552-1556, (19^9). 

and accurate method of determining the dynamic elastic constants of 

isotropic, homogeneous solids from the transmission times of elastic 

pulses through samples in the shape of right circular cylinders. 

In this method a longitudinal elastic pulse is delivered to one 

end of the rod by a pieao-eleetric driver (an X-cut quarts crystal), and 

the arrival of longitudinal pulses at the opposite end is detected by a 

pieso-electric detector (another Z—&ut quart-; crystal). In general, 

5^ many pulses arrive at the detector for each pulse delivered by the driver, 
z. 

and the transit time of each pulse is determined by an electronic system 

in which a crystal oscillator acts as the basic time standard or clock. 

Although only longitudinal excitation and detection are employed, 

some of the pulses are transmitted part of the way by rotational waves, 

and the velocity of rotational waves as well as the velocity of dila- 

tational waves may be determined from these transit times.  Froa these 

velocities and the density of the witerisi, all of ju3 elastic constants 

may be determined. 

A simple theory was devised with the methods of geometrical optics, 

which had been successfully applied to rsany similar problems in seis- 

mology . 

iieferring to Fig. 1, the pulse delivered by the driving crystal 

1.1 
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would be expected to generate a group of plane waves of dilatation 

having a continuous distribution of frequencies and traveling very nearly 

parallel to the free cylindrical wall of the rod.  Part of the energy of 

these waves may be expected to be converted into rotational waves at the 

2 
free cylindrical boundary since dilatational waves alone cannot in general 

Ti. Poincare, Lecons sur la theorie de 1'elasticite, (Paris 1892), 
p. 12Z*ff. 

Handbuch der Fhy3ik, BJ. VI (Verlag, Julius Springer, Berlin, 1928), 
pp. 323-324. 

See also reference 7. 

satisfy the free boundary conditions.  On the other hanu, a portion of 

the energy of these dilatational waves will reach the opposite end of 

the rod without modification.  In terms of ray paths, this would corres- 

pond •::• T\rh  n  r.iith  riS h~ or ;><•..  If L is the length of  i-.he rod and a 

is the vt  Ify of dila*.ational waves in the roJ* tn-j ^XLIS<S tranamitued 

alonr such • i-.t.h .vcuid arrive at the detector with -i t:\uij:.'tission tir.e. 

t, eiven by 

t - - 11,1) 
a 

.Returning to the rotational waves obtained by transformation at the 

free boundary, such waves must follow Snell's law as in optics. If u is 

the velocity of rotational waves in the rod, this require" that 

0iR eR . b 
sin '»   a •   •' 

where 9n is the angle between the direction of travel and the normal to 

the boundary surface, and 8 is the angle bctweei -"'•'-  direc* i '^  f*f mot.i m 

of the rotational wave, obtained by ir tnaformation at the boundary, ana 

tho normal to the oounoara surface. 
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Since b * a, and in the present case U • 90°, the rotational waves 

must travel approximately at the critical angle 9,, relative to the normal 

of the boundary surface where 9 is given by 

sin 9C - b/a (1.3) 

Juch rotational waves, obtained by transformation at the upper 

boundary, would eventually strike the lower boundary and there give rise 

to a reflected rotational wave and a dilatational wave.  In satisfying 

Snell's law, these dilatational waves obtained by transformation at the 

lower boundary must travel very nearly parallel tc the boundary, and part 

of their energy would eventually roach the detector end of thr rod. This 

energy would then have been carried over such a path as bqrd where bq and 

rd were traversed as dilatational waves, and qr wa3 traversed as a rota- 

tional wave. 

If D is the diameter of the rod, it is obvious that the length of 

the path qr is D C3C t',, whiie the dis'ance advanced along the length of 

the rod is D tan B,.  Consequently the time delay in transmission, at, 

incurred by taking the path bqrd instead of be is given by 

At = (D/b) esc L>_ - (D/a) tan •<  - D(b~2 - ?.~2)1'2 (1.4) 
o Li 

where the last form is obtained by elimination of 0_ with equation (1.3). 

It is apparent that such transformations can, in general; take place 

a number of times.  Consequently, such paths a3 bqratc and bqrsturd are 

possible and coii'cjpond to delays in transmission of 2at  and 3At re- 

spectively, and each gives rise to a longitudinal pulse at the detector 

end of the rod. 

The process of reflection at the ends of the rod can also five rise 

to delayed arrivals.  Ln particular, part ol'  the «nergy of the original 



dUfctatior.al vave t'.roup can be reflected without change of mode of trans- 

mission, once at each end of the rod, and thus travel tha length of the 

rod three tim&s. Similarly, Lt JOJ.I1 le reflected twije at each i-ni c\nd 

travel the length of the rod five times etc. 

As a result of these two processes, tr*ni«it timea corresponding tc 

the equation 

t - m(L/a) * nD(b~2 - a~2)1'2 (1.5) 

are to be expected where ra is any positive odd integer and n is any 

positive integer or zero. Here in is the number of times the length of 

the rod is traversed, and n is the number of delays incurred by the trans- 

fer of mode of transmission process. Since during each such delay the 

delayed disturbance moves the distance D tan t>_ along the length of the 

rod, it is obvious that the integers m and n must satisfy the resr.rir los. 

mL 2LnD tan B (1 6) 

The experimental re *ults are in excellent agreement with equations 

(1.5) &nd (1.6).  Each of the multiplicity of detected longitudinal 

pulsoa obtained fir each driving pulse corresponds to a particular ad- 

missible combination of the integers m and n, and the appropriate vari- 

ations are observed when tne diamoter or  length of the rods is altered. 

However, the relative amplitudes of the various delayed pulses are functions 

of L, D, m, n, a, b, and the tendency of the material in the rod to dis- 

perse the energy in 3uch a disturbance into random elastic disturbances 

(heat motions), and many of the arrivals predicted by equations (1.5) and 

(1.6) are too feeble to be detected under some experimental conditions 

The exact wave form and duration of the driving pulse are obviously 

of considerable importance.  The duration should be small compared to each 
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of the tines (L/a) and D(b '" - a *")   in order th*t the detect*i pulses 

be easily resolved in terms of arrival times, and the wave form should 

be simnle but ea3ily recognized against background disturbances.  But, 

aside from these considerations, there appears to be no additional in- 

formation obtainable from geometric optical methods. 

In an effort to obtain more detailed information, the literature 

was searched for treatments of the transmission of pulses through a 

finite circular rod made of dissipationless, homogeneous, isotropic 

material. This search was entirely without success; there is not even 

an exact treatment of the free vibrations of a finite circular cylinder. 

Pochhararaer has given a reasonably complete treatment of some of the 

~i 

L. Pochhammer, J. f. Math (Crelle's Journal), 3d. 81, 32/*—336, 
(1876). 

simpler modes of transmission of simple harmonic wav«s along an infinite 

circular cylinder, but he was unable to adjust his wave solutions to fit 

all of the boundary conditions at the ends of a finite circular cylinder. 

However, since his solutions do satisfy the boundary conditions on the 

free cylindrical surface, these should nermit a theoretical treatment of 

the transfer of mode process dealt with above. This possibility is 

explored by means of integral transformations in Sections 2 =md \  of this 

paper. 

Since thii investigation requires the use of Gessel functions, and 

it was recognized from the start that some form of approximation might 

be required, it was found desirable to investigate pulse transmission 

throurh an infinite plate. 
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The simple harmonic modes of traiic   tion in an elastic plate were 

investigated by Lord Rayieigh4 in 1389 and by H. Lamb5 in 1891.  Oe- 

J+Lord Rayleigh, Proc. Math. Soc. London, 20, 225-234, (1889). 

^H. Lamb, Proc. Math. Soc, London, 21, p 85ff, (1391). 

script.ions of the various modes were given, and the existence of certain 

types of nodal surfaces was discussed. Although Lamb reconsidered the 

H. Lamb, Proc. Roy. Sec. London (A), 93, 114-123, (1916/17). 

problem in 1916, very little additional progress was made. However, it 

was noted that the apparent "wave velocity" belonging to these modes 

could be infinite and was often greater than the velocity of either dila- 

tational or rotational waves in an unbounded mediuir. These investigators 

were aware that the velocity of diiatational wavt3 is the maximum velocity 

with which a transient co-ild be propagated into an undisturbed region but 

offered no very clear picture of the relationship of these modes of trans- 

mission to the propagation of transients. 

7 
This problem was taken up by Prescott in 1942 in an effort to throw 

'J. Prescott, Phil. Mag. Ser. 7, 33, 703-754, (1942). 

o 
some light on che benavior of rods, in a review of this article, Bourgin 

8D. G. Bourgin, Kath. Rev., 4, P 121, (1943). 

suggested that these modal velocities be treated as phase velocities 

and that classical group velocity theory be used to rationalize tho 

act'iril rate of energy flow. 
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These modal velocities may properly be referred to aa modal phase 

velocities but are certainly not phase velocities in the same sense as 

used in describing propagation in an unbounded medium. The group velocity 

calculated from these by Rayleigh's classical formula gives, as usual, 

the phase velocity of the modulation unvalope for a disturbance which 

is siraple-haraonically modulated at a modulation frequency small compared 

to the frequency uf the carrier mode. These group velocities are not 

directly related to the fastest transmission of an abrupt signal. In 

9 
fact Sommerfeld and Brillouin clearly demonstrated in 1914 that the 

9A. Sommerfeld, Ann. der Physik, 44, 177-202, (191/*). 

L. Brillouin, ibid, 203, 240. 

fastest transmission of an abrupt signal takes place at the phase velocity 

corresponding to infinite frequency. These investigators actually dealt 

with the anamolous dispersion found in electromagnetic wave phenomena, but 

the results are capable of immediate generalization to all wave trans- 

missions of signals. 

In 1947 Cooper  gave a completely satisfactory deiucnstration that 

10J. L. B. Cooper, Phil. Mag. Jer.   7, 38, 1-22, (1947). 

the modes of simple harmonic propagation In a plate were in quantitative 

agreement with the expected maximum velocity of propagation, the velocity 

of dilatational waves in free space. His method was similar to that of 

Sommerfeld and Brillouin.  It was also pointed out that the group velocity 

suggestion of Bourgin waa defective in several respects.  In elastic pro- 
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blema, a single velocity of energy transfer is at best sorae sort of an 

average, as there must be at least two rates of transfer corresponding 

to the dilatatiun«l and rotational methods of propagation.  In the nodes 

of propagation considered there are two plane waves of dilatation and two 

plane waves of rotation, all of which are individually traveling in 

different direction*. In the classic*! r*oup velocity theory all of the 

plane waves are traveling in the same direction. "• o mention is made of 

the fact that the maximum classical group vel^uity does not determine the 

velocity with which the first effecta of a signal are transmitted. 

Because of the complexity of his formal solution. Cooper did not 

obtain quantitative information on anything except the very first arrival 

time for a transient disturbance. In Section 3 there is considered a 

particular problem in pulse transmission through a plate which closely 

resembles in nature the pulse transmission problem in the rod as en- 

countered by Hughes, Pondrom, and Mima. By the employment of a suitable 

series of mathematical taanipulations, it is possible to break the dis- 

turbance into parts segregated according to the nature of the path 

(number and kind of reflections). The contribution of the wave groups 

making up each part is in turn analyzed in terms of a group transit time, 

and the total contribution of each wave group is then expressed in terms 

of a single integration which can be carried out by numerical means to 

obtain detailed quantitative information on the shape and amplitude of 

all the possible reflections from the free surfaces bounding the plate. 

The minimum group travel time is easily shown to determine the beginning 

of the disturbance carried by each wave group. 
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An extensive effort has been made by this author to break up into 

similar wave groups the formal solution obtained for the cylindrical rod 

obtained in Section 2. This effort was only partially successful, and a 

brief resume is given in Section U- 

In terms of physical experiments, only the rod problem can be set 

up in an exact miner. The plate problem could be approximated by a rod 

of rectangular cross section with one side of the rectangle large compared 

to the other side and to the distance from driver to detector. However, 

no quartz crystals of suitable shape are currently available for such an 

experimento As a result, the concluding section m devoted to a com- 

parison of the theoretical solution for the plate problem with some 

typical experimental data obtained from rods 



2.  A FORMAL SOLUTION FOR THE PROPAGATION OF AN INITIALLY 

PLANE DILATATIONAL PULSE ALONG A CYLINDRICAL ROD OF INFINITE LENGTH 

A direct theoretical approach to the experiments carried out by- 

Hughes, Pondrom, and Kims is to consider the transmission of an initi- 

ally plane dilatational pulse of energy along .»  rod of unif. ?m circular 

cross-section. Since the terminal conditions it the pieao-electric 

driver and piezo-electric detector are both partially unknown and difficult 

(if not irapo39ible) to handle by the present mathematical methods, we ahaLl 

resort to a simplifying assumption as to the behavior of the driving 

crystal, take the rod to be infinite in length, and study the behavior 

of the average normal stress on a plane section of the rod, normal to its 

axis, located some distance along the rod from the driver. This should 

enable one to study the relative amplitudes of the various reflections 

and is approximately proportional to the response of the detecting crystal. 

Ths simplifying assumptions regarding the action of the driving 

crystal are most easily understood from Fig. Z.    Thfi ciirciiiir rod is 

actually assumed to extend to infinity in length along the L  axis in 

either direction ;'rom Luc uri^n 01 coordinates, and the driving crystal 

is thought of as occupying the plane section of the rod defined by Z - 0, 

RiR •  This driving piezo-electric crystal will be formally replaced by 

a uniform surface distribution of double-sources  over this plane section, 

A- E. H. Love, A Treatise on The Mathematical Theory of Elasticity 
(Cambridge 1927) 183-1R9 ami 30^-30?. 

<:. 
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2.2 

and the strength of the double sources will be so/ne suitable function of 

time after t • 0 and zero before t - 0. 

If we employ the phyaical components  of displacement £„, {, , £7 

12 
Ibid, 51-58, 89-91, and 287-286. 

in the directions of increasing R, u, and Z respectively and the corres- 

ponding components ^„, £. , and £, of the body forces per unit of mass 

•rfhich act upon the material of the rod, thu dynamic elastic e^ations of 

a homogeneous, isotropic material take the fcrra 

—— - (a - b ) 
5A 2b2 *L        2 

-b 
at ;R R Ju 

1 6 i (a' 
- R — + - (— 

_R iR  oR  R (ae 

) 0 
- i)« - 

) .32 

2-t 

~2 «k-ffl 

d%   (a2- b2) 3A  2b2 a£R   Q 3 d   1  (a2    ) d2" 

at* R       ao    R
2
   ae        IR JR    JR    R

2
 (c?e2      )   az2 )   az2 L'L (2D 

at2 
U - b  i 

34 

az 

,, i a      o       i   J 

[R 3R    dR     R~ ae 

i   a 
 (RL) * -    - 
R    aR R  3-j az 

?-. 

* 7PJfz "Sz 

where a is the speed of dilatatioral waves, b Is the speed of rotational 

waves, and t is the time 

These must holi at nil points wilnin the bcdy of the rod, that is 

Rlr. R , if the rod is presume.-1 U> '•>« witJioot f»Mlt- or c U »T defects.', 
o • ' 
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and the solutions must be periodic in 6 with the period 2n radians 

[i.e. T(R,Q*Z)t)  " £(R*$*2n,Z,t£] in order to be single valued., 

Further, since no forces are applied to the outside wall of the 

rod, we must hare the boundary conditions that the stress components 

3RR* SI»' an<^ %?  •*ni»h at the surface of the rod, R - R o Thee* 

conditions are given by 

SRR  / 2 ~*\*  -2 35R -*=- • (a - 2o )A • -co —- 
p 3R 

- 0 

dR R 
(R - RQ) (2.2) 

RZ "^.fk" 
az dR 

- 0 

vh^r* p is th* d*nsit-v of t-h« rod nst-*riEl= 

Now since the force actions produced by the driving crystal are 

independent of 6 and have no component in the 6 direction, it is 

desirable at the outset to restrict this study to those motions in which 

t_ • £e • 0.. and the remaining components of £  and g  are independent 

o.* ©o In thie case the system of equations (2,1) isduoes to 

>2~ 
£R " !>R 

JA d2iR 

at dR 

1 3 I 

R dR  dR  R2  3Z2 
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axr az 

I a     a a2"! 

R 3B      3R aztr Z 

1
 3 d^7 

R 3R    m     az 

and the boundary conditions (2.2) raduce to 

if" 
dR 

- (a2- 2b2)A • 2b2 -» - 0 

(R - Ro)     (2.4) 

2*. >*[&. £ 
p    [az  aR_ 

- o 

Further, in order to study the tr nsmlesion of pulses. It is con- 

renient to take as initial conditions the simple situation in which £ 

and £„ and their first partial derivatives with respact to the time <•:-• 

zero throughout the rod at the time t • 0 

If the coeponwita. f and r_, of ths body force per unit of mast, 

are taken to be zero for t <• 0 and are assumed to be known after t • 0 

throughout the rod; a solution of equations (2.3) and (2»4) is readily 

obtained by the application of Fourier 5.ntegral transfonuntiona. The 

solution, subject to the assumed initial conditions, is unique, and an 

excellent account of the method is given by Titchmarsh< 

13 Eo C. Titchraarsh, Introduction to the Theory of Fourier Integrals 
(Oxford 1937), particularly Chapter X. 
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We will employ the transformation indicated by the scheme 

f(R,Z,t) 6i(9t "rZ) dZdt    (2.5) 

'-oo 

where £ is the vector body force whose components are some known 

functions of R,Z, and t, and p is the transform of 5° The components 

of p are obviously functions of R, and the parameters y, and s. This 

integration process is assumed to converge for real values of y, and 

any complex values of s such that the imaginary part of s is greater 

than some positive number 6.  In symbolic form this will be written 

Im(s) > 6> 0 (2.6) 

Similarly for the displacement vector £ , we will have the 

transform, u, given by 

uW,3) -  I f<K^,t) £l(8t ~rl)   dZdt      (2.7) 
d o        v - CKJ 

Now eliminating ("_ and C„ in equation (2.5) with equation (2.3) 

we find, on integrating by parts twice wit  -especl tc each of the 

variables Z and t, the result 
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2 2   . a ad •3 
-8     • by    • ~ R — 

R"      R    dR       3R 

,   2    K2„     X d(RV (a - b )iy   
R 3R 

- (a-.b^): 
du 

3R 

2 2  2 
•    •  e y 

b2 a 
R 

a~ 

R dR 5R 

• Pi 

(2.8) 

« 

where it has been assumed that the components of t   and its first partial 

derivatives  with  ro?pect  to t  and Z vanish at infinity as well as at 

t  • 0.    This additional assumption it- in essence a boundary condition 

to which one is led by  th« physical  reasoning,   that  the  finite energy, 

stored in  this  system by  the body  forces  during any   drivinf Dulse,   must 

ultiir.Ht.ely  become diffused  thro ip,h  the infinite ro~i  30 as   to  become 

negligible as t •>» or Z -* - °o .    Thus tre displacements,   strains,   >md 

veiocitiws inust —>0 as t-*o° or 7. ~^ - °° • 

Similarly,   regarding the  system of  e-.i ir\tions   (2.4)   as  the  components 

of a vector,   we  find  for  its  trans fern the  result 

r- ,    2 ',-1 
-  8         (a--  2b-) 
2 

»     -  *  
1       dR R 

u      •   (a - 2b  )iyj-      -  0 

iybup •  b" 
•>   duv 

•3R 

(R - V (2.9) 
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When a solution of equation (2.8) for u is obtained which is 

regular for R •?-. R , Im(s)>6 and satisfies the boundary conditions 

(2.9), the displacement vector £ can be found by the reciprocal trans- 

formation to that of equation (2»5)» namely 

C(ft,Z,t) 5! ?(R>r>3) £i(8t "" rZ)dyds (2.10} <^J      J 
where 

t >&>0. 

Although equations (2.8) and (2.9) can be solved for u when p is 

any given ve~.' ,r  ','. iction of R,y, and a, we need only consider such a 

•*' vector p as wouJ :• correspond to the particular longitudinal piezo- 

electric drive given the rod by the driving crystal. For this purpose 

we must take J>j " 0 and £L « 0 whan Z / 0, but undefined when Z • 0. 

It is much easier for one to make definite assumptions about p and then 

interpret these physically, than to deal with the singular body force 

representing a surface distribution of sources. Consequently1 we will 

take 

PR-0 

•Yg(s)a (2*n) 

ThuSj   since  the only non-zero >:ompcuient  of p  is   lndopi>i;>i«>m   of •;, 

equation   (2.8J   has   the   v«r«   uwnj.S.    >"jrtirulrr   "mint Ion 
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V - o 

(2.12) 

"ZP- 

•2rag(») 

p.(»V«2) 

However,  this does not In general satisfy the boundary conditions given 

by system of equations (2.9) 

Since the systems of equations (2-?) end (2.9) are linear In u, one 

can generalise the above solution by adding ae a complementary solution 

any linear combination of solutions of the homogeneous system of equations 

2      .2 2 -s    • by    • 
a2      a2 a        dl ,     2       du- 

R        R    aB      3RJ   R SB 
(2.13) 

i ai 2    .2,.     * J(RV 2        2 2 
-(a - b )±Y •  l-s    •ay    - — — R [- 

b2a 
- o 

R dR L R    3R      3RJ 

The solutions of this equation are those considered by Pochhaaner , 

and of these only the two solutions 

^ - -hj,(h&) 

u_ - irJoM 
(2.H) 

UJJ - -irJ, (kR) 

u? • kJ0(kR) 
(2.15) 

and the linear combinations thereof are regular at R * 0= 
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In these solutions «J0(z) and Jj (z) denote Bessel functions of the 

first kind  of order zero and one respectively of the complex variable z, 

G. H. Watson, A Treatise on the Theory of Bessel Functions 
(Cambridge 1944)* p.40. 

A V2 and        p       -j 

h - L(»/-)2- rj Ia(h) ^ 0 
1/2 (2.16) 

k - L(?/b)2- rj Im(k) ^ 0 

Two other solutions can be found by replacing the Bessel functions 

of the first kind by those of the second kind, but these are singular at 

R • 0 and must be excluded since the displacements must be regular at 

R • 0 in order to satisfy equation (2.8) at R - 0. 

Thus, for the vector body force given by equation (2,11), the most 

general solution of equation (2.8), regular at R « 0, is of the form 

Uj, - -C\h J,(hR) - C2ir J, (kR) 

(2.17) 
-2rg(s)       , i 

"z "  2 * cii>rvo(hK) * CpkUo(kR) 
pash 

where C-, and C„ are arbitrary numbers independent of R. 

Substituting this result in equation (2.9) and solving fcr C, and 

C?, one finds that the boundary conditions are satisfied if 

2i(a2-2b2) r
2 U2- r2) J/(kRo)g(s) 

c -  -  ~ _ 
pb ash A^(h,k,R ) 

•wd 2 ° (2.18) 
2(£- 2b*) / (2yh) i7/(hRo)g(s) 

C^ •  2  2 I       '. " 
pb ash iji/(h,k,R ) 

/*    o 



} 

• 

2.10 

wner* 

2v2 4^'ha 

*. 

(2.19) 

•i^SikJ    (hR )J    (kR ) 

By •limlnating C1 and C2 in equation (2.1?) with (2ol8) And sub- 

stituting the resulting values of u_ and u_ into the reciprocal Pourier 

transormation equation (2.10), one readily obtains expreneior.fi for the 

displacements £R and £_.  In this connection, it is convenient to write 

»R  »RC 
(2o20) 

f z - *ZP * /zc 

where £-„  is the displacement produced by the particular solution of (2.6) 

and £RC» &nd £ _ are the components of displacement in the complementary 

solution which contains the influence of the boundary conditions.  It is 

apparent that £„ is the displacement that would be produced if the rod 

were unbounded (R •€© ) „ 
o ' 

Upon carrying out the above orocess of elimination;   it is clssr that 

-oo*txr 

£ — 
bZP       ,,   ,2 (2n) 

-«© • it 

OO 

2g(«)e-i(8t-rZ) 

«J_ 
p ash" 

i» 

ydy-ds 

X>t> >0 

(2 21'i 
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I 
1 

2.11 

*RC " 

2(a2- 2b2) 

(2n)2i 

g(a)da 

•.rir    w 

Qk2- y2) J, (hR) J, (kRo)+2r2 J, (kR) J, (hRQQ £-i(st " yZ] 

pabTiAv(h,k,R ) 
* ° (2.22) 

2A 

?ZC " (2n)2 

-2(*2- 2b2) g(a)ds 

-cotlT    w - do 

Qk2- y2) J0(hB) J,(kRo)^2hk J0(kR) Jf(hHQa 6-1(9t - *z\ 

pab2h2Av;(h,k>R.) 
T*f 

In equation  (2.21)  the integration ov«r f is readily performed in 

terms of residues.    If Z > 0,  we may by Jordan's lemma      consider the 

'E.  T.  Whittaker and 0. N.  Watson,  A Course of Modern Analysis 

(Cambridge 19W)),  p. 115. 

contour of integration closed by an infinite semicircle in the upper 

half of the y-plane,  and the value of the integral is the sum of the 

residues at the poles in the upper half plane.     If equation  (2.21)  is 

written a» 

-1 I £i82 1 1 
•'       •  

ya •  a      yu - • 

-i(«t - yZ) 
C dyde 



the evaluation by the residue at y - - gives 

2,12 

$ 

i   ,'°°*l\r.^-<t - !) «(•) 
ZP •*w 

2rri j psa 
m + iT 

Z> 0 

Similarly* we find 

*ZP 

-1 

2ni 
-vis 

/-*e-ftT 
psa 

Z<0 

Mow,  since the tensile stress along the axis of the rod S_„ is 

given by 

5S -  (a2- 2b2)A •  2b2 ^ (2.23) 
P az 

we find, by assuming the validity of differentiation under the integral 

sign,  that the tenalle stress produced by the particular solution,  S77D, 

is given by 

S
ZZP " : 

2ft 

V^ *    v    *» 

-tfO HT 

^e-^-1!1) ds (2,24) 

Now,  taking 
oo 

g(s)  -    |      F(t) €l9t dt (2D25) 

where F(t)  • 0 for t <. 0, we have the usual result for one-sided Fourier 

transforms    , 

E*   C.  Titchaarsh,   op.   cxt..,  k - 5 



1 

2rr 

oo+CT 

g(o)  6"       '   ds   " 

«o*i. T 

P(t)       t   >0 

0 t < 0 

and 

2„13 

(2o26) 

3     „ • 0 
ZZP 

|Zj>«t 

SZZP •** -~r'    >*<*" 

(2o27) 

Thus,   the primary disturbance generated by the singular body forces 

is a plane wave of dilatation propagated along the Z axis with speed a 

and a shape determined by the functional form of F(t) which we will leare 

unspecified for the presents 

The contribution of the complementary solution to S?    may likewise 

be computed by substituting £„„ and £      into equation  (2.23)  and differ- 

entiating under the integral signo.    This contribution S 7„ is a function 

of R^   and the receiving crystal will respond only to its average value« 

Since all displacements are independent of Q, we find,  by averaging S^„ 

over a plane section normal to the axis of the rod,  the result 

r 

'ZZ 2 
Ro 

2p(a2- 2b;?) a    «,  2 
o    2f-a 

R 
r ° 

szzRdR " 
0 

- to  )   r-      -I   o    * 

—?— KRJ •- R L    "-±0      R 

»(r 
RdR 

dZ 
^ 0 

Substituting the values of 5 „  and ;  from equation (2.22/ nnd 

performing the integration over H befo~e thooe ov r y  we obtain 



(1 - 2b2/a2)2 

22C      (2n)2i 

2.1k 

rao*iX.   ps* 

V2a«3g(.) J,(hR) J,(kRo) £"l(at "rZ) 
5
 2      ^d8    (2o28) 

aotlT v 
bVR0A^(h,k,R0) 

Sine* S77J> is independent of R,  it i» obvious that the average vaTue of 

the entire stress, "Q>77>  i» givsn by 

S m   S •    S 
ZZ       ZZP       zzc (2o29) 

From equations (2.22) and (2.28), it is obvious that the eoaple- 

2   2 
a*e»t«ry solution vanishes if a • 2b . This situation corresponds to a 

zero Poisson ratio, sr t  since 

(1 - 2b2/a2) 
1 -cr 

(2.30) 

An actual material having tf" • 0 wou..d be highly unusual and have 

interesting uses. It would not violate the conditions of physical ata- 

bility. Rayleigh ' has poi.ited out that an isotropic material is stable 

17 Lord Rayleigh, Proc Hath. Soco of London, 17, 4-11, (188?) 

if its Poisson ratio lies ir. the range 1/2is cri -1. When er - 0, it is 

obvious that no reflections of the primary dilatational disturbance 

considered here are produced by the surrounding walls.  Such a material 

would be extremely useful for making certain types of solid acoustic 

delay lines» 
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The evaluation of such integrals as occur in equations (2.22) and 

(2.28) c**n be carried out by a number of different procedures. Since 

the integrands are even functions of h and k, they are single valued 

functions of s and y. In addition, they are regular for Im(s) > 6 > 0, 

0 * 8 sS R.i and t< 0. Thus, the integration over « is sere under these 

conditions. When t > 0> 0 s? R =£. R > the integrands are regular for 

!*(»)<< Texcept for poles which are all located on the real axis of the 

s plane when y is real. In this case the integration over s is obtained 

as the OUD: of the residues at these poles. Since the equation 

^(h,k,Ro) - 0 (2.31) 

3 
is actually the frequency wavs-r.uaber condition obtained by Pochhaiwter 

for the normal modes independent of 9 for the infinite rod, it follows 

that this residue evaluation will express the integral as a series of 

these normal modes. Each u£  these modes must then be integrated over y. 

These processes will converge very slowly and are incapable of showing 

the number of reflections which have given rise to the energy arriving 

At any given time and place<> 

A second approach is to expand the integrand in a series, convergent 

for Im(s) ,> 6, and integrate term by tenao This possibility is a conse- 

quence of the relations 

Im(h) > } Im(s) 
SI 

1 (2.32) 
Ia(k)> ± Im(s) 

wnich are readily obtained from,  equation (2.16) and are valid feu- all 
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real values of y. in this process, a type of series can be found in which 

the variou3 types of geometrical reflected paths appear as separate terms 

distinguished by appropriate changes of pha3e according to the increased 

length of path. This method is pursued with some 3ucces3 in Section 4» but 

the method is much more successful in Section 3 in a similar problem 

involving pulse transmission in a plate. 

This problem of pulse transmission in a flat plate is much more 

susceptible to formal integration and is to some extent an approximation 

to the present situation. Since it will sr-rve as a guide in the more 

difficult problem of the rod, it is considered next. 



I 3.     THE PROPAGATION OF AN   INITIALLY  PLANE DILATATIONAL PUI.JE 

THROUGH  Mi INFINITE PLATE 

4. 

As a parallel investigation, let us consider an infinite plate of 

uniform thickness, 2K , wnich, if described in rectangular coordinates, 
o 

is bounded by the two plane and parallel surfaces X - R , and X - -R^, 

and extends to infinity in all directions perpendicular to the X axis* 

We will assume a uhifons distribution of double sources, whose strength 

depends on the time In the sam* n\anner as in the previous", example, along 

the infinite rectangular strip defined by Z • 0, |X| .*£ R » 

The effect of the initially plane dilatational pulse, and the corre- 

sponding reflections form the stress-free bounding surfaces, can again be 

readily studied by calculating the average stress S„7 on another infinite 

strip defined by Z • constant and JXJ^; R vhL;h is parallel to th'? first 

strip containing the double sources and located a distance, Z, at«ay = 

Proceedi:^ '.:• the same manner as in the case of the infinite rod, 

the dynamic elastic eolations, when expressed in rectangular Cartesian 

coordinates, take the form 

—£  - (a2- b2) — 
•V 

at 9X 

3 A 

.2-1 

ax2  dY^ 3Z2 
_J 

d   h 2       2 
—±  - (a*"- b2) - 
at        «3Y 

- b 
3^ 

ax2 aY2 az2 

—T-  - (a « b ) — - b 
-'a2 ,2-i 

•4 v*- 3Y (U. 

»x J>x 

*Y  *Y 

iz' $ •>. 

(3.1) 

J,l 
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dX   cfl   dZ 

for an isotropic and homogeneous solid, where/_, {*„, and £*_ are the 

components of displacement, and £„, £„, and ?! are the components of the 

body forces per unit mass in the di ections of increasing X, Y, and Z 

respectively. 

Since the planes X - -R which bound the plate must be stress free, 

the boundary, conditions S^v  " S\rv " ^v7 "  0 must be satisfied on these 

surfaces.  These uiay be written as 

S df 
°XX ,  2    „,2>,A   -.2 *X 
  » (a - 2b )A • 2b   
p dX 

XT P& 
3X 

11* 
dY 

- 0   ( X - -R^ (3.2) 

xz H, 
ax 

a£x" 
32 

where the symbols p, a, and b are those previously defined. 

For tho present circumstances, we wish to consider the case in which 

£Y - "t • 0, and all of the other components of f ,   and C are independent. 

of Y.  This is the two-dimensional case discussed at length by Rayleigh 

5,6 
and Lamb   in which the above general equations reduce to the system 



3»J 

o    — a v,    — D y     •  v — ""-  / • S i 
3t^ -31'- dZ dlBZ 

—"T ~ b    —i> a    3 (a - b )  
3t dl 3Z oL3Z 

with the boundary conditions 

(3.3) 

-I* _ a
2 —2  «. (a

2_ 2b
2) —  . o 

ai dz 

a      a |     a/ 

(i - -a0)       (3.4) 

P     az     ax 

Applying the Fourier transformations indicated by equations (2,5) 

and (2.7) to this system with the assumptions £T - £_ =0 for t^ 0, 

and f_, £„, and their first oartial derivatives are zero at t - 0, one 

obtains the transferred system 

,.2 2  2,    . , 2 . 2,  duZ   2 d "x 
\o y -  s )ur- lyia - D ;   - a  r- - PT A        ax    air       A 

2 
2 2  2S M   ,   2 U2X  

dUX  . 2 3 "Z 
- - fa  2" " Pz 

ax    ax^  L 

(3-5) 

(ay- s^)^" *y(» - b ) 

with the boundary conditions 

a2 —— • ir(a
2- 2b2) u„ - 0 

ax L 

2 auz    2 ^"'V       (3.6) 

ax 



Making the assumption 

PX-O 

~2rg(3)a 
p  (3.7) 
Z    P* 

corresponding to equation (2.11) of the previous analysis, we find that 

the system of equations (3*5) possesses a very simple particular solution 

independent of X which does not in general satisfy the boundary con- 

ditions (3-6). 

This solution is easily seen to be 

Ujp-0 

2rg(s) 

apsh 

To this solution we may add any linear combination of solutions of 

the homogeneous system of equations 

"^*""** m* a 
ax    ai" 

2 (3.8) 
du.  ~ a -• 

(b>~- s-Juj - ir(a*- b') -~ - a" ~ - 

(a2r
2- «2)u- - iy(a2-b2) — - b2 —-§ - 0 L ax    zir 

Since these equations ars each of the secowi order with coefficients in- 

dependent of X, four linearly independent exponential solutions can be 

found. It is convenient to write these as 
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J-faX 

u^ - -ih€"ihX 

^3 - ire 

,lhX 
•a " ir€ 

- ir6-ihX 
^2 

^23 " _ilt6 
ikX 

(3.9) 

"X4 " ir€ 

-ikX ., *-ikX 
UZ4 " ik€ 

(3-10) 

where h and k are given by equation  (2.16), 

Thus we have as a general  solution of equations  (3.5)>   (3-6),   and 

(3.7) 
U 

A      £—4     m Xra 
B"l 

4 2rg(s) 

«Z *  £   V'Zm * ~~2- m-1 ^.ash 

where the four numbers C are arbitrary but Independent of X. 
m 

By substituting this solution into the boundary conditions (3-6) 

and solving for the numbe~d C , one finds 

C. - C 

i(l-.2b2/a2) *t&ty   (k2^2)3in(kRo) 
^b sh 

x    <c  r— 

(k2-f2)2cos(hRo)3in(kHo)Wft'
2hk sin(hR )coa(kR ) (3.11) 

2 , 

4 

i(l-2b2/a2) y*ty (-Vh)sin(hH ) 
 pb ah  

R k2-y^) cos(hR )sin(kR )*i*y2hk ain(hR )cos(kR ) 
o     o o     o 
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Upon substituting the values of ur and u_ thus determined into 

equation (.2.10), it is convenient to write 

k-t XC cz • tZP 
+ r (3.12) 

where   §n is again given by equation  (2.21), 

2/ 2v 

^XC     (2n)2i 

•oo+i T     f oo 

ooftt        - oo 

[_(k2-r2)  sin(hX)sin(kR )->2y2 sin(kX)sin(hR Jay^gU) 6 

r(k'i-r2)2coB(hRo)sln(kRo)*V2hk sin(hRo)cos(kR 5"Jnb2sh 

-i(at-yZ) 

dyds 

and 

r >6 > 0 

(3-13) 

f    . =SUC2QL1 c->zc 
(2rr) 

r   2    2 1      * -i(st-YZ) 
ljk'-r  )cos(hX)sir(kR )~2hk  cos(kX)3ln(hR )jHy^e(s)6 

2    2,2 
Rk  -v )  cos(hR )din(kR )*V'"hk sin(hR )cos(kR f], b *h" 
L o o o oj 

dy-d.o 

Here it is again found that the complementary part of the solution 

<yr  and £.7fl are zero whun the Poisson ratio 0" \s  zero (a ' - 2b ).  The 

general similarity to equation (.? 22) is rather obvious. 



3,7 

In rectangular coordinates the tensile stress component S__ is given 

by 

lZZ       ,   2  _2.<       _2 6k         2 3h ,   ,2 K2v  d*JL —- »  (a -2b /<i •  2b      - a   •   (a -b  ) —— 
p dZ dZ at 

(3.H) 

Since, in the present example the displacements are lndet ?ndent of Y, the 

average value 9„_ of S__ over an infinite strip defined by Z  * constant 

|XJ2S R is given by 

ZZ 
2R. 

-R 

V" 
t^a 

2R 

P. 
?f ° 

J 
3a„  dX • 
az 2R 

X-R 
p(a - 2b )     I   o 

-It 

(3.15) 

From this expression it  is  easily shown  that 

where 

szz " SZZP ' &zzc 

ooO-^T    p<?° 

I   • •«.'    /;."-\    ^ 

ZZC (2n)2i 

-i(st-yz) 
e"V ag(o)sin(hR  )sin(kR  )   fc o o 
.3  2, 

7    2x2 L3 Rk -y ) cos(hR )sin(kR )*l<rAhk sin(nR )cos(kR )1R b^ft 
i_ o o 0 0 _J   o 

r >o >o 

(3.16) 

dyd."      (3.17) 

and S    _  is  given  by  equation   (2.2?) 
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Since the integrads in equations (3-13) and (3-17) are even 

functions of h and k, they are single-valued in e and y and permit an 

evaluation in terms of the residuen at the poles which appear due to 

the vanishing of the denominators. For t <0, JXJ ^. R ,  the integrands 

are regular for I (s) > 6 >0, arid the integral over s is aero for all 
SI 

real y. Thus, 3_ _ - 0 for t < 0. For t > 0, |l|r< R* the integrands 

are regular for I (a)s, "V except for poles which occur on the real axis 

in th© s plane for real y. The vanishing of the bracketed part of the 

denominator in these expressions is the frequency wave-number condition 

for the r.imple harmonic modes of the even type discovered by Rayleigh , 

and the evaluation by residues for t .> 0 will result in an expression 

in terras of these normal modes. This process will be qiiite complicated 

and is not capable of showing what kind of geometrical path is involved 

in any part of the disturbance arriving at a given place at a givan time. 

This process becomes a practical expedient in the limiting case 

R —*0> as all of the poles due to the simple harmonic modes degenerate 

into a simple pole.  Letting R —> 0 in equation (3-17), it reduces to 

•••<. 

. r *>+iT r°°   , ,   ,       -iUt-YZ) 

Llm    S„  _ 
R-K>    iZC       (2n 

z,ZC       ,^_s2 

2{l~2b2/^)9f2^{e) 6 
? 

, (s  - Y  a  )(s  - r   0Q) 
.. 00 * <• t u _ -^ ou 

where C is the classical v«lo<;it of longitudinal waves in a. thin fiat 

plate  Una is given by 



I 

3-9 

2 kh2(*2-  b2) 
Co     ~2 (3.19) a 

x3A. E. H. Love, Op. Cit., p 497-498. 

This integral is readily evaluated by the same steps ae employed In 

connection with the integral in equation (2.21) to obtain 

Lim S.   - (a/C )F(t - |z|/C ) - F(t ~ |z|/a) 
R^ Q to. o o 
o 

which when combined with equations (2.2?) and (3.16) yields 

Urn S7_ - (a/C )P(t - |z|/C ) (3.20) 
R-+0 o 

We will later see that this is an asymptotic result valid as  {z/2fQ-?° <y°. 

For the present, let us simply note that for l/2 > cr^_i, a >C >2b 

2   2    2 and thet at c7" » 0, a - C • 2b . Thus, for <T'» 0, the disturbance in o 

this limiting case reduces to the original dilatational disturbance. 

For the prsctical study of the transients Involved in the comple- 

mentary solution, a different approach is much more successful. By 

expressing the sinss and cosines in equation (3-1?) with exponentials 

and multiplying numerator and denominator cf the integrand by £      o, 

it can be put in th-3 form 



1 
1  10 

(l-2b2/«2)2 

7ZC        (2n)h 

oo 4ir   r °° 

CO *iT      <J - oC 

_   , f 2ihRir 2ikftl   -i(st-rZ) 
•—   »     "*e »•* / JLT _J LT- 

<Sfd8 (3.21) 

where 

2    p 

11 

i 1 
fj     2ikR 2ihR  ! 

° -   € °i 

2i(h*k)R 
w w. "  - C 
I   ^ 

f,  • (k   - Y )    * 4y f»k 

(3-22) 

•»r»H )"<-)i 

f    - (k    - y  )  -  ov"hk 

Fro;a the identity 

(i-w )(l-w.,) 
[J 
h *., -*.,   ] l-W., 

I.   ! 

i-w. 'd 
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and the series expansion 

(?o 

1-w  n-0 

which is uniformly and absolutely convergent for jwj <. 1 it is easily 

found that 

oo 

-i E 
(l-w..)(i-wj  n=C 

n*l    n+1 
"l   " W2 

Wl " ~2 

(3.24; 

1 

and this series is uniformly and absolutely convergent if |w. \ ^L 1 and 

I*J<1. 

From the equations (3-22) and the algebraic identity 

n*l    n+1  n/2  .<   •. , / , sc 
*»'-[_   - v*2    r~-i (n-Jl(-l) ' 

q-0  (n-2q))lql w, - w.. 
(w1wi)

q(w1 • wJ 
n-2q 

(3o25) 

which is valid when n is a po3itive integer or zero, one readily obtains 

by collecting like powers of the exponentials the result 

n*l n+1 n w, - w 

wi - w: 

r-l        <• |        2ihR -12 P   (wk 
n.-X.'    n-n .,n„ "        | 

.i 2    2 — 

n-n„ n_ 
<T     2ikRl  2 

C 0| I- c 
J 

(3.26) 
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where 

*nl 
_m .2 (n, •n0-<s-:)t (-l)

q      „ .„ 0 

P   (f./r.) -   y -^-2—: (f0/fJ
ni V2q 

«    1 /   . /          * , •          v.,        *i- 
n,n0 *rs? ln,-i;Un„-vi;. 4$ 

when n,, n^, and m are positive integers or tero and m does not exceed 

the larger of n, and n0. 

From the obvious elimination between equations (3.26) and (3.2/+), 

the result 

V"n  -T—' r^o n.   2iR 

-- La  L, P (Wc-D * e   ° 
nt ^. 2iR„(n.h*n_k) 

(1-w^d-w^)   nx-0 n2-0 n n2 * 
x (3'2P) 

is obtained.  Then multiplying by the appropriate factors and collecting 

like powerB of the exponentials, we have the expansion 

nT*£> nT*"0 (I - w, ) (i - w.-.) n, - 

1 n, _2iR (n.h^nJc) 
• Rv'V • (f1/f2)(n1-n2)1 P (f^f )(-l) 

1t   ° x 

(3 29) 

with tne stipulation that the leading torra (n.«n ,-0) has the value unitj 

The absolute convergent of these double aeries ia easily studied 

with the aid of a .~omn*r:ison seriea.  It ie obvious that the terras of 
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the series {J.2A)  are in magnitude equal to or less than the corre- 

sponding terms of the double series of positive terms 

*n, 

f*    f1    y^£^l  |fJt  |VV*M       2iRo(nlh.n2k)( 

n,-0    n„-0 q-0    v 1 

19 Forming the diagonal  sum    ,  V ,  of ell terms in this  series  such that 

19 W. L. Ferrar, A Text-Book of Convergence (Oxford 1933),D.133-1^5. 

n, • n ^ n, it is easily shewn that 

n*.'. 

V    - 
n 

1   -   (v^-   "-  v2"   ' )/{\iy-  v2J 

(l-v,)(l-v  ) 

where 

Vl +   V2 

V1V2 

K   2'   V   *" *   2,'  l' t ° 
2ihR ^21kR 

6     °      6     °| 

Thus,   since 

Hm V r 
n-> =s ' L-V, )(l-v,) 

when   | v, j <1 and  jv-j < 1,   it war that the series  (3.2?)   is abso- 

1'.»»•>"•    r onver^ent  if   j v. j <•  1 and   [v.,| <.  1.     Sine*- the smaller in magni- 

tude of v    and v,-, is always negative,   it  io obvious that  these two con- 

ditions ore equivalent to M ~v, ) ( I -v J > 0 or that 
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i>|f2/f3|[£-
2Vm(h), 6';molmU] • £-a0ti»to*t*l*ti      (3.30) 

is a sufficient condition for the absolute convergence of the aeries 

(3.28) and (3-29). 

In order to use the series representation (3-29) over the range of 

integration involved in equation (3-21) and integrate term by tt:rm, it is 

desirable that it be uniformly convergent over this ran^e of integration. 

It 1B eaey to demonstrate the uniformity of ite absolute convergence for 

Ira(s) )> I    from the inequality (3-30).  It is evident that the exponentials 

appearing in this expression have an appropriate behavior from equation 

(2.32) when H }  0. but the quantity |f /f J requires some further ex- 

amination. 

From equation (2.16) it is  readily established that 

y2  - (bV -a2h2)/(«2-b2) (3-31> 

and substituting this result into equation (3•23) one finds 

tx •*  4(l-<r)2(h-k)(h-m1k)(h-iTl2k)(h-m3k) 

f. « ^(l-cr)^(h*k)(h*m1k)(h*m.k)(h*nt,k) ti x      2. i 

(3 32) 

where m, , m, , and m, are the roots of  the cubic equati- 

ng _m2(i><r)/(i-<r) - m -tf^/u-*)2 - o        (3.33) 
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Investigation of the roots of thi3 equation for finite r«al values 

of the Poisson ratio <T reveals that there is never more than one positive 

real root.  If m. is taken to be this root, it is found that BL ,> 1, 

R*(au,) iSrO, and He(niu.)^ 0.  iYhen <T" 0, all of the roots are real, but 

BU y 1,  one root is negative, and the third is zero. 

From the definitions of h and k, equation (2.16), it is readily 

established that 

Re(k/h) 7t 0 (3-3/*) 

and  since m0
+na^ <C 0 and n^n. J> 0 it  follows that 

(h*m?k) (h+nv-k)       (h/k • m^m-k/h • nu • n,x) 

(h-m,.k)(h-m_k)       (h/k • m?nL,K/'h - ra« - m_) 

Consequently,   from the  equations  (3«3?)»  we find 

I'AI* 
h+k 

h-k 

h+ra-k nx. i 

h-n.k m.» 

KJW with the aid of the equations   (2.16) 

ri+K 

h-k 

A2 2. 2 
a"b       |h*k|"      a^""     (|h| + !k|) a^t       (j sj/a* \y 1 • j s|/b* jy j ) 

2.2     I   I 
a -b      jsj a2-b: 

l» 
*T a -0 

or 

h*k      a+b 

h-kI     a-b 

2abjy| 
1  • — 

(H*b)jsj 

i2 
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Similarly 

h+cLk 

h-nuk 

|h>mk a b     jh+aLkj 
<<L    * 

aV  (jhj^lkl)2 
|n>ni 

1.2. • ,       •-   : K     , . 
|h -mjTc   I       (ac^a -b ) | a -tRr   I       ^a -b ) | a -CRy  | 

2 2L2>,   2 ,„2 2, ~ ,   2 2 .2NI _2 „2.2, 

or 

h*nL.k 

h-m, k 

a~b (lal/a+irhn^lal/b^lrl) (a^a^b) [_ '(tjyi+b) |a| _ 

(au-Dabjyf 

, 2 2.2,i 2 ,.2 2, 
(n^a -b )|s -CRy j (V-b>|i-c2iri: 

R I.I2 

"?0 
where C_ is the speed of Rayleigh  surface waves and is the positive 

K 

) 

20 Lord Rayleiph. Proc. Lon^c i Ri . - Soc., 17, p. 4-11 (1387) 

root of 

b2(mjVL) 

R  m2-(b/a)2 
(3-35) 

Since m, > 1 > b/a for physically real values of '.he Poisson ratio, it 

follows that a > b > Cu  for physically real situations. 
it 

Collecting the several  inequalities,   it  is  evident  that 

kAi - 
a*b    m.a+bj   j_    (a+b) | e JJ   J_   (m-.a+b)   |s[J 

a-bj 
(3-36) 

1 - C 2r_ 
R     2 s 
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and that  j f Jt. \   la thus bounded except as y/s --*coor -l/t'R.    As a 

function of y/a,   f„/f,   has  a double pole at oo and simple poles at ~l/CD. 

If Im(s) > 0,   it follows that   | fVf. |   is bounded so long as y Is 

restricted to any finite range of real values.    The right-hand side ot 

the inequality  (3«30)  is consequently bounded over all values of Re(s) 

and real y when Im(s) >0 and R   > 0,  because Im(h)^> 0,  IraCkJ^O and 

both are functions which vary as y when y->oo or when y and H.ia(s) —> oo 

together in such a wa/ that y/s -> C and C < b.    Thus,  the right-hand 

side of the  inequality   (3.30)   has  a least  upper bound K which is a function 

of  Ira(s)  but  uniform over all  values of Re(s)   and real y.     Since Ira(h) 

rnd Ira(k)  are functions which vary as  Im(s),  the right-hand  side of the 

inequality   -*• 0 as  Iro(e)—>o° for all values of Be(s)  and y in the domain 

ij| considered,   and  the  least  upper bound M -> 0 as  ].m(s)->oo»     Consequently, 

there  exist'-  a positive number 6  aucn  that M < 1  for  Im(s) > o.     It  is 

thus evident that  the series   (3.28)   and  (3»29)   are uniformly absolutely 

convergent  over th* domain  of integration in equation  (3-21)   for 

Iiti(s) > 6 > 0      The number b —too aa R  -^O, o 

Substituting the aeries (3-2?) into equation (3-21) and integrating 

term by term, one finds 

T • V"1 ^ 
r\. "0 n_«*«.  n ,n 
X ti i.       A, 
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Q   (R ,Z,t) - (-l)nl 
nln2 

2(l-2b2A2)2 

(2n)2K 

OOfi T r <3o 

V_ oo * t IT   L/ -0O 

•pn^)/^ • (nrn2)/f2] £  
(Vfl^"^3 

"r 2 

2 3 / \£>-i(st-yZ-2R n.h-2R nJc) 
r as g(s)C o 1   o 2 

dyds 

(3-36) 

C > t y 0 

and the inversion of the order of summation and integration is justified 

by the uniform convergence of the integrals involved as well as the series. 

Elementary inspection of the exponentials occurring in these integrals 

leads to the identification of each with the net contribution of all the 

waves which have traversed the thickness of the plate n.*n_ times, n, 

times as a diiatational wave and n-, times as a rotational wave.  This 

identification will be more completely justified in terms of the group 

transit time to be associated with each such wave group. 

The integrals in equation (3.33) can b*- put- into *> mirh  mor« useful 

form by means of a chrngu of variables and certain contour deformations 

Expressing the integrands in terms of the new variable y instead y by the 

transformation equations 

y • ys» 

he 

f  - t   54 ll   X1S 

f V (3.39) 

ka 



i 
and the groun-transit time t.    defined by 

n]   2 

3.19 

t - y-Z •  2R n,h  •  2R n„k n, n? o J. o 2 0«w>) 

the abwve integral beconjes 

Cn,n  («0*Z.t)  "  (-Dnl 
2(l-2b2/a2)2 

T'2 (2n)2R 
o       w 

oO+i-'C 

OO+iT 

(n1+n2)/ ?x •   (^-n^)/ ?2 

2 -is(t-t        ) 
Q 1 r ag(s)£ nl 2 

'nin2
( V V^—^d3 <3.a) 

where P is the straight line (arg y • -arg s) shown L'< Fig. 3-1 which 

corresponds to tht real axis in the y-plane.  From equations (2.16), 

(3.23) and (3.39) it is obvious that 

r  .. ,2      -2x1/2 
h - U/« - y ) 

k - (l/b2 - r2) 

f, - 

2  -2Nl/2 

(k ~ y )    * by    hk 

—2  —2 2   —2   
(k - Y )     * i*Y    hk 

Re (k) 5=.  Q 

Re (k) 2=-' 0 
(3-42) 

I 

Next, we consider the deformation of the contour F into a new contour 

n which  ia chosen such  that the group-transit time t is real ard n.nn n,n„ 

positive a*. .>-. 
1 "2 

on th*» contour.  Since there are pole3 of varied 

branch points at y a  -(lAO and coiubined ooles and 
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branch points at y • -(l/a), it will be convenient to introduce a cut in 

the y plane extending from y - l/a out the positive raal axis to oo and 

another cut extending from y • -l/a out the negative real axis to -co. 

all of the singularities lie on these cuts as shown in Fig. 3»1 and the 

system of equations (3-^2) is valid throughout the plane cut in thia 

manner. This process of cutting the plans selects one sheet of a four 

sheeted Riemann surface. An alternative definition of the sheet selected 

is the conditions Re(h) k  0 and Re(k) h. 0. 

The construction of the required contour presents no very serious 

problem as there are never more than two roots of equation (3• A.0) in y 

consistent with equation (3«i*2), As equation (3-i+O) ia an equation ex- 

pressing t    as a function of y it in convenient to define a reciprocal 
n^ n^ 

*. ^ 
relationship expressing y as a function of i    when t    is rea]. 

p.. n _ n -, n ... 
_ 12 s. ;. 

This relationship 'will be expressed as y        (t)  and will be defined as 
"ln2 

the root lying in the upper half of the y plane when these two roots are 

complex conjugates and as the root with the smaller magnitude when both 

roots a~? real.  This provides a unique and continuous transformation 

from t    to y for real values of t    — 2R Rn./a) • (n.-,/bTl   It is 
n. n„   ' n,n-,    ou 1      ?;    *-* 

desirable to think of real values of y   (t) a= lim y   (t) + i £ 

because of the cut-plane. 

From the equations (3-i*2) il is obvious that when y is in the upper 

half-plane and much larger in magnitude than l/a cr l/b, h /V' k ^-iy. 

Applying this result to equ^-ion (3>W-')> it is obvious that when t and y 

are large the asymptotic result 

i 
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ia obtained, and,   for the corresponding values of h and k,   the similar 

expression 

h<\>k^t/[iZ • 2R (aj*n2)"l (3-W») 

is obtnined. 

For large values of t the roots of aquation (3*kQ) are thus complex. 

If we denote by y   (t) the complex conjugate of y   (t), these two 
nln2 *        nln2 

numbers are the two roots of equation (3'40) consistent with equation 

(3-»*2). These roots decrease in magnitude as t decreases through real 

values and become real and euual at a value of t which we will denote by 

t    when the corresponding real value of y lies in the interval -l/a *r 

y :5:l/a. Under these circumstances we may obviously take 17   as the 
-nin2 

I —* \   — •*o 
locus of y   (t) as t decreases from • oc to t    and the locus of 

n n n n 
12 12 

y   (t) as t increases from t    to •co . At the point where these 
nln2 _nln2 

tvc   ^oin,  it is obvious that t must have a bend point miniraun as y 
nln2 

varies in a continuous manner.  At this point we must hava 

dt 
n,n 

' * - z - 2P hr • =r r - o (3.45) 
dy ° [h   k 

or 

(Z/2Ro)
2 !!l « !!s "2 
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Eliminating y    with the equations (3.42), this takes the fora 

,2 
Rn2h/ k>nH  *(Z/2Ro)2   - b2 ["(n^/K)*nJ  *(Z/2RQ)

2 - 0      (3.46) 

This expression is obviously a quartic in the ratio (h/ k) and can 

be shown to have only one real root (h/ k) st.C and no pare iiaaginary roots 

for all real values of (Z/2R ) if n. f* 0, since a > b . Since it is 

easily established that the left-hand side of equation (3-46) changes 

sign in the interval 0 ""^(h/ k) •<• b/a, it is apparent that this positive 

root in (h/ k) lies in this interval, and this must correspond to the 

minimum croup-tran3ii time t    as it is the only root which satisfies 

Re (h/ k) •=£ 0 which is valid throughout the cut plane. 

Since it is easily established from the equations (3.42) that 

-2 r 
b2- a2(h/ k)2 

iV[i-(h7 k)j 
(3.47) 

it is apparent that tor n, f  0, the contour described above crosses the 

real axis in the y plane in the interval -1/a *Cy  <Cl/a and thus lies 

entirely within the cut y-plane.  Further 3tudy reveals that at this 

crossing point y has the same sign as (Z/2R ) and that as (Z/2R ) —9- 00 , 

(h/ k) ~>0, and y -fl/a. 

The case n, • 0 requires further study which is easily carried out 

for equation (3.46) simplifies to 

-: 
(h/ k)' \0/  c> (1 >'7a ) (Z/2R }' (1.4S) 
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Since a > b, this will have A root in the interval b/a > (h/k)> 0 only 

if 

o    (t>A)       ? 
(Z/2R ) <  = - tan*9„ (3-49) 

1 - (b/a)2 

- -o 
and from equation (3*47) the corresponding value of y, y    is given by 

^  - (i/bxz/a^ji* (z/ai^0) t- ,2 
(3>50) 

Substituting this into equation (3.40) the corresponding minimua group- 

transit tine t    is river; by 
on2 

TO t°  - UA) o n„ 

1/2 

A.  C 

l1/ 

r • 12II sj ] (3.51) 

When n, • H and th-j inequality (3 49) ia satisfied, the contour 

defined above in terns of the coeplex roots of equation (3-40) consistent 

with the equations (3-42; is an acccpta!~e contour as it crosses the real 

«xis in the interval -l/a < y-<. l/a. This contour is easily shown to be 

n  hyperbole. 

rfhen the inequality (3>4?) is reversed, equation (3-4S) for (h/k) 

has pure imaginary roots wh.ch., when substituted into equation (3-47), 

show that the hyperbolic contour would cross the real axis in the interval 

l/a *•< y <. 1/b und would thus cross a cut in the y plane. This must be 

avoided by a detour around the end of the cut involved.  For (z/2R ) 
'      O 

positive, this means oi detour around the point y • l/a and is readily 

accomplished. 
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Instead of crossing the reel axis at the double root point given by 

equation (3-5-)> t is allowed to decrease below the value of t    given 
* o n» 

by equation (3.51) until the path cf y        (t) now real has followed along 
o n~ 

- -M     —- 
the top of the cut to the point l/a, and the path of y   (t) is then 

followed along the bottom of the cut to return to the double root point 

sa t goes through tne same valueo in reverse order.- The resulting contour 

is sketched in Fip. }.I aa the contourY1      «  It can be defined as the r o n2 

limit of  the contourI"1   as n,-> 0.  For this indented contour it is 

obvious from equation (3-J*0) that the minimum values of t and y ere given 

by 

T n - (Z/a) • 2n2Ro(i/b
2-l/a2)l/2 

•f - l/a 
o n_ 

(3^2) 

which is valid when 

(2/2n R ) > tan 9 
<. o o 

The minimum group-transit time is in this case not a bend point minimum. 

The contourP may be thought of as the limit of T    as n, —> Q oo  '       - ir.n,    1 ' 
L <. 

and n -*0, and it obviously runs from *°°t3 l/a alcng the top of the 

cut around the point r • l/a and back to + oc along the bottom of the cat 

when 2_> 0.  It is obvious that the e4.iat.ion3 (3-52) hold for this case 

for all Z > 0. 

The process of deforming the original contour I"1 to the now contour 
o 

I can thua be accomplished without passing over wiy singular points in 
nln2 
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th« cut Y  plane. Further it is possible to 3how from equations (3*36) 

and (3-43) that the integrands vanish as  jy:P2nl*2n2"*3^ £~m'r' ! 

when v —> <x> along any curve lying between p and "P   n    an(* m ^s, a 

positive number independent of \y\  which is never zero except when 

• ^    ..2   U.    ,  „. -Sg -..., CJ.T.8 J g  ^ V„ 

at 00   are zero, and the integral* over y are absolutely convergent at all 

of the intermediate stages of the deformation prt :*38. The only 

difficulty with this process lies in letting ^.he contours ±       and 

j7   touch some of the singular points. These difficulties may be 

treated by various liadting methods, and will be considered later £.s 

they occur In only a finite number of terras for finite values of 

-J (Z/2Ro). 

Having thus arrived at the expression 

2{l-2bVa2)2 ( 
I ^„ „  (R ,2,t)   - (-1)°1 
I Q . .„    2(l-2b7a2)2' 

V2    ° (2rr)2Ro 

, _~is(t-t        ) ^1 -._/-,)£ n,n,' 

b^h3£ 

r - -~|D    - r^(s)'c   _      '12 

in which t~t    i3 real at all points in the range of integration, the 

order of integration can be reversed and the integration over 3 is easily 

accomplished.  From equation (2.25) and (2.26) it i^  readily found that 
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p C& + 1 x 
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rt? •fr 

riB. 
g(s)ds F(t)dt - G(t) 
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(3.55) 

By applying this result to equation (3«p/») the single integral expression 

C„ n  (R^Z,t) - (-l)
nl 

(l~2b2/»2)2 

nin2 ° R TTT 
o 

-2 
Y  a 

^ 

(n^n )/ ?1 • (n -n2)/ 1? P   (?.,/ fjG(t-t   )df 
'n-n. Z     1     n.n ' ' (3.56) 
12 12 

is obtained.  Since G(t) • 0 for t •< 0, this expression clearly reprasenta 

, the minimum group-transit time* a transient which is zero for t ^ t 
V2 

for the wave groups represented.  It is also evident tnat the range of 

~ _» 
integration rnav be terminated at the points y „ (t) and y   (t) at which 

&       • 12        ln2 
t    - t, as G(t-t   ) - 0 for t „ < t. 
Bln2 nxn2        ^n 2 

In this expression all of the waves, which have traversed the thick- 

ness of the plate n. times as a diiatational wave and n^ times as a ro- 

tational wave, have been segregated according to their transit tiiiiu.  Thia 

is  a highly desirable representation from a physical point of view and 

throws some light on the more abstruse connections between wave theory 

an geometrical optics. 

Considering for the moment only real values of y>   h and K, it is 

evident from equation (3-40) and (3-<+2) that the interpretation of these 
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variables JLjri  terras of geometrical optics ia 

h -  (l/a)   COP bD 

k -  (1/b)  cos GR (3-57) 

X -  (l/a)   sir. 6-  -  (1/b)   sin 9 

vhere the notation is that of Section 1. It is perfectly obwioua that 

the last relationship is a restatement of Snell's law, equation (l.?). 

A most striking feature of the reprnaentation In equation (3-56) ic 

that the angles 9n and C» are bctn re*l at only one point on the contour 

L"  ; and this point is the minimum transit time point.  The repre- 
1 2 

sentation is thus almost enti-ely marts up of "waves" which have no geo- 

metrical meaning.  The miniLT-ur. transit time wave groups on the other hand 

have 6 and 9^ real and correfponi exactly with the gecmstrical minimum 

transit time paths to be expected from geometricTl optics 

To demonstrr-t^ this equivalence, let us consider the possible geo- 

metric paths in which the disturbance travels the thickness of the plate 

n, times as a dilatations! wave r-.r.d n^ times as a rotational wave obeying 

Snell's law where there is a transfer of mode and the law ct reflection 

whure there is no transfer of mede.  ouch paths are shown in Fig. 3-2. 

It is obvious that wherever the disturbance is rotational, it travels 

in a direction making the an^le a    with the normal to the reflecting 

surfaces of the plate, and wherever it is dilatational with the angle 8-.. 

Thus, since the thickness of the plate is 2R the distance moved alon? 
o fo 

the plate is 2R.    tan bn for each dilatational trio and 2.R    tan 9„ for each 
o     D o     R 

rotational trip.  The total distance traveled along tne plate 2 in the 
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total of n, • ru trips is th-s 

.-. 

£ 

Z - 2R n, tan 9_ • 2R n. tan 9^ 
o 1     D    o 2     H (3.58) 

Making use of the transformation equations (3'57) this result is found to 

be identical with equation (3-47) which determines the minimum transit 

time point on the contour 1' 
n, n,, 

i.   c 
Since the total distance traveled in each rotational trip is 2R    sec 9_. r o     R' 

and that in each dilatational trip is 2R sec 9_, the transit time is given 

by 
2R  n, 

o 1 2Ron? 
n,n_       ,.   , 
x 2  a cos t»~  b cos 9„ 

(3-59) 

Multiplying equation (3.5^) by y and subtracting the result from equation 

(3.59) one finds 

t    - yZ - 2R n 
lln2 n,n.,        o 1 

1 - ay sin 
• 2R n 

> a cos 9~ o 2 

1 - by sin 9 
R 

b cos 9 
R 

which reduces to equation (3«40) upon using the transformat!en equations 

(3<57) to eliminate o„ and G . 

This general equivalence of the minimum transit times given by the 

two methods requires more study in the case n, « 0, for in this case the 

wave theory has given two possible minimum transit times.  The corrnct 

one of these was found to be determined according to whether the in- 

equality (3.49) was, or was not, satisfied.  Setting nn • 0 in equation 

(3-5(3) and comparing with the inequality (3-i*9), one finds this in- 

equality to be equivalent to 
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(tan 6R)
2^b2/(a2- b2) * (tan Oc)

2 (3.60) 

where QQ  1B the critical angle of incidence for rotational waves and is 

given by equation (1.3)- The minimum transit time, when the inequality 

(3>'+9) is satisfied, is given by equation (3-51) which is readily ob- 

tained setting n, = 0 into equations (3.53) and (3.59) and eliminating 

G^ Thus, when Qa^O^,  the minimum transit time corresponds to row- 

tional waves travelling a path consisting of pure reflections 83 shown 

in Fig. 3.3a. Under these conditions, some interaction, (transfer of 

mode) is to be expected between the rotational and dilatational waves 

at the boundary wher^ these reflections take place.  However, these 

correspond to minimum transit time paths with n^>0, and, tbu?., do not 

appear in the integral expression for n^ - 0. 

When 0B > 6P, t: ' inequalities (3>i*9) and (3-60) are not satisfied, 
ft    0 

and the pure reflection path is not the quickest oath of transmission 

that creases the thickness of the plate n2 times and as a rotational 

wave each time  In this case the critical angle p-Vths, such as those 

shown in Fig. 3-3b, have a much smaller transit time.  These paths were 

discussed in Section 1 in terns of geometric optics.  Setting ra = 1, 

L • Z, n • T12,   and D - 2R0into equation (1.5), one obtains equation (3-52) 

which was derived from the wave theory xhar\  the inequality (3*49) was not 

satisfied. 

It is obvious that these two kind3 of path are identical when 

&D 
= jp.  However, it is not .TO obvious why such a transfer of mode 

process an thio crltic.%1 an.^le path is so important when the angle Co for 

the ours ref] .istion ">"*.*. h \\> ~  the property (' -> 6,,. In this situation the 
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pure reflection path should lose no energy as it suffers total internal 

reflection and should then be expected to make a quite significant con- 

tribution to the overall disturbance. However, in their experimental 

work on the comparable case of pulse transmission in a rod, Hughes, Pondrom 

and Mime found that the critical angle paths explained ail of the delayed 

arrivals which were apparently present. 

Geometrical optics offers no relief from this apparent contradiction, 

but equation (3.56) and the nature of the contour T reveal mathe- 

matically the reason for this experimental rormlt.  nftien these critical 

angle paths give the minimum transit time, the contour i encircles a 

pole at Y  • l/a at the minimum transit time, and the sU.rt of the corre- 

sponding disturbance is sharp and easily identified against the background. 

On the other hand, when the pure reflection path, with e -«£ ©_, gives 

the minimum transit time or for the ^en^ral case i   , the contour is 
nln2 

not close to this singularity, and the disturbance build3 up at a much 

slower initial rate which is governed by the values of dy/dt    in the 

neighborhood of the minimum transit time point on the contour, J* 
nln2 

The3e initial rises are much 3lower than those corresponding to a critical 

angle path and are much harder to detect in the presence of a considerable 

background of other disturbances. 

This contrast in behavior has a distinct influence on the use of 

equation (3'5&)« When the contours touch the singul' rities as in the 

situations where a critical angle oath gives the first arrival, some 

appeal to analyticitv in the function 0(t) is required so as to admit 

small contour deformations iu  avcii -m  infinite integrand.  Thia diffi- 

culty is easily avoided by the \:.- of a double integral expression. 
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Returning to equation (3«50» and substituting the value of g(s) 

from equation (2.25), ths expression 

foa+iT 

Q^ovz.t) - (-Dni 
2(l-2b2/a2)2 

(2rr)\ 
-oofiTv 

poo 

r J 
~is(t-t        -t ) 

-2 e  , _ nin2 
F<t')[<Vn2)/ 7, *  (nrn2)/ f2] PnCty f/-^ dl'cfd (3.61) 

• 

is obtained. Then using the familiar result 

e_i3t   i   t > o 
•<T7 -is        0        t < 0 

the above expression can be reduced to the form 

r>"t~t n1fff 

C       (R >Z»t) = A (R^t-t'WtV 

w?0 

where 

An1n2<»o'Z't-t,)-(-1>ni 
<l-2b2/a2)2a 

b^R ni o 

r„V^ 

r„,„/*-^ 
1 -2y- 

_    -   r <V 
[(n^n2)/ f1 *   <nr Bj2)/ 7^ Pn <V */- 

(3.62) 

(3-63) 
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Since the functions involved in this integration over y are defined for 

all values of y in the cut y- plane except the actual singular points, it 

is easily seen that the contour of integration may be any curve joining 

the point y   (t-t ) to the point y_  (t-t ) which does not cross a 
nln2 nln2 

cut, and the value of the integral may be found for all valuea of R ,Z, 
o 

i —      i. 

and t-t except those for which y   (t-t )  falls on a singular point. 
nln2 

These must be found by an appropriate limiting process-  In general, the 

numbers r\ (R ,Z,t-t ), which determine the resnon3e of the coraple- n,n ' o      ' ' l 

•*• * i 

mentary solution to a unit impulse delivered at the time t , can be found 

for all values of R ,2, and t that are of physical interest.  It i3 also o - 

apparent that they are capable of analytic continuation into the realm of 
i 

complex values of R , Z, and t,t-t ). 

Although the integral in equation (3.63) can be expressed in terras 

of algebraic processes and logarithms for all of the integral values of 

n., and n„, these expressions are extremely complicated, and it is probable 

that any calculations will be morn readily made by numerical methods of 

integration.  As an example, for the simple3t case n- • n_ • 0, one finds 

•(t-t )/2 - Oi 

,  ^2,_2N2_ ! -2- . 22f «              .,i-2b /a ) a ) y dy 

0 °  °            bUR  ni          , h3?. 
w (t-t )/Z • Oi X 
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(3.60 

where 

M    - (2{l-<X)m2 •   2<r_ l)1'2 

q q 

N        -   -7T 
q 

2rv   2     2, 2     2 2    2W   2    2s ra    (TII -«L)(m -m,J»(m -m_)(m -nuJ + Cm -:n„;(m - x. )\ 
q\_-  i    ±       q     2 q2       q     j! q    ,)       q    IJ 

G~   is Poissons  ratio,   and m, ,   m..,   and m.,  are the  roots  of equation  (3 • 33) ^ 

In addition to the obviously numerous  steps in  such a calculation,  there 

is  the further difficulty  of having  to  compute a  small difference  of two 

quite large numbers when <T is  ne-'irly  zero.     This   iifficulty  is  present  in 

nearly all of the  integral  expressions  obtained in  this analysis.     It  is 

due to the changim-; nature of the singularities located at y • -(1/a). 

as   <T~>0 a pole,   located on another sheet of the Riemann surface as- 

sociated  with the  integrand  for  all   real J~ r 0,   approaches  the branch 

points -(i/a)   aa  a  limit.     However,   it   La  readily  observed  that 

fi X (R  ,Z,t~t   )-• 0  aa    <T   -J»   0,   and  an  a^rovima;,':-   ft r  n       o I   _>    •• 

small    <*" couli be found ii i   wr;j..:;: if .ii'.:i   L;.i-.-,','i n'oiuoers  art; 
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avoided. In the case of equation (3.6/*) the obvious approach is to expand 

in ascending powers of CT  and use the leading term in this expansion. 

The convergence of the series (3«37) is obvious for R )> 0 and 

finite values of 7 and t because it will consist of only a finite number 

of non-xero terms under these conditions. However, the number of terms 

may be quite large, and the individual terms are difficult to compute. In 

addition, there i9 a difficulty associated with the serios as a whole. 

This stems from the fact that although any individual term has the property 

of bsginninq at a certain instant of time, it does not end or, in general, 

even become small as t—* oo   .  Indeed, all of the terms except that for 

n,«n~-0 become infinite as t —> oo   ever, though the driving pulse, F(t), 

9k has a finite luration.  Thus, the ultimate decay of the overall transient 

for any finite value of Z must be brought about by the destructive inter- 

ference or the various wave groups which have different values of n, and n?. 

It is thus necessary tc consider all of the non-zero terms in order to get 

an accurate picture of what is happening at any particular place and time. 

A fair approximation can be had by considering only those wave groups whose 

minimum group-transit time is juat less than the time under consideration 

when the driving uulse is of snort duration.  This follows from the be- 

havior of the terras in which n, • n Is constant.  For these terms wy find 

as a result of equations (3>^3) and (3-63) the asymptotic expressio 
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EA (Ro,Z,t-t')A^l)n 

nT-0      n, >n-n, b^R ni 
111 o 

^ 

Mt-t')/(Z • 2inHj (3*65) 

-2^T 

f 1h
3 n > 0 

(t-t')/(2-2JjiRo)       L 

which is valid when 

t-t' >   >   (l/b)(Z2 • i,nV)l/2 (3.66) 

t 
Thus, when t is small as in a short driving pulse, we find that the sum 

of all of the terms, for which n.. • n? i.s  constant, remains finite as 

t—^ OO.     Since these summed groups ilso interfere destructively as a 

result of the factor (-1)  i3 equation (3»65)» it thus appears that a fair 

approximation can be had by neglecting all terms for which n. • n0 *fe n and 

n is such that the inequality (3*66) is satisfied.  However, if any term 

is neglected, it is necessary to neglect all others having the same value 

of n, • n*.  A somewhat better approximation can be obtained by using 

equation (3»65) to calculate these terms. 

A quite comprehensive interference effect is also to be expected a3 

Z —7 °° , for under these circumstances the minimum group-transit time 

t    approaches the minimum group— transit time t    and the contour 
nln? c n0 

as a limit where n, and n, are any finite integers.  Thus, 
00 1     i. 

as Z becomes large, any contourj*   effectively encircles the singularity 

nln2 

i 

; 

*n, n. 
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at Y  " (l/a) i'or values of t    Just greater than the minimum value t 
nln2 nln2 

which are in turn just greater than the minimum value t    corresponding o n 2 A to a critical angle path. The corresponding contributions to M   (R >Z,t) 
nln2 ° 

occur at times just slightly later than those of the critical angle paths 

included in M   (Rrt»Z,t) and have a sign which is governed by the 

factor (-1)  appearing in equation (3»i>6). These successively later 

contributions are qualitatively of about the same size a3 those of the 

critical angle paths and as 'L "+ °°    completely destroy the disturbance 

corresponding to the critical angle path. A similar destruction of the 

A 
primary dilatational disturbance by terms of the form r"\  (R >Z,t) takes 

place as Z —> °°   .  In either case, this destructive interference by these 

slightly delayed but similar wave trains should be expected to ultimately 

shorten the wave trains corresponding to the direct dilatational and 

critical angle paths as Z becomes large. This is equivalent to a gradual 

elimination of the lower frequency components in these wave trains as Z 

increase*.  In order to maintain overall conservation of energy, these 

must reappear in new wave trains formed by constructive interference and 

appear at later times> 

The very complicated undertaking of obtaining an asymptotic series 

and a remainder will not be attempted here, but it is possible to obtain 

the leading term in such an expansion in a fairly direct manner. Returning 

to equation (3-56) the integration was found to effectively involve only 

a finite part of the contour V        «3 G(t-t   ) - 0 for t < t   . The 
nln2       nln2 nln2 
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initial and terminal points were found to be Y        (t) and r   (t) res- 
nln2       nln2 

pectiYely, the values of y for which t    • t. 
nln2 

For convenience, let U3 consider the case in which Z and t —^ oo 

in such a way that t/Z approaches a limit somewhere in the interval 

0 G (t/Z) ^ (1/b). We find from equation (3.W3) that f   (t) —> 
nlR2 

(t/Z) • Oi and y   (t) —p  (t/Z) - Oi for every finite value of a, and 
nin2 

n2.  If the further assumption is made that F(t) • l(t) where l(t) is 

Heavisides unit step function defined by 

— \   - y —• w^w 

l(t)  - 0      t <0 (3.67) 

the fcrmai result 

Lim      S zzc 
&o 

(2i)(l-2b2/a2)2 

2nrR b o 

P(t/Z)  - Oi 
-o        o°        do 

hJ      n7-0    n„-0 

J    (t/Z)   • Oi 

(Vn2)/ tx •  (nrn2)/ ?2 
P       -     - V2<V V (t-rz-an^h^^kjdy 

is readily obtained from equations (3 37),   (3-54),   and  (3-5!;)   in which 

the contour of integration may be the limiting contour or ar.y curve joining 

the initial and terminal pointts which ^oes not cross a cut in the /-plane 
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except at the singular points. The double aeries Evolved here is easily 

summed to yield the result 

Lim  3ZZC 

-(2i)(l-2b2/a2)2 

p(t/Z) - Oi 
~2„3 
Y  * 

,, -2 2w, -2_2\ 

"^ J (t/z) • Oi ° 

<*r 

which is readily integrated to yield 

Urn      S?zc  - -l(t-|z|/a) • (a/Co)l(t-|z|/Co) 

Z-><»o 

Since this is a linear system, it is obvious r.Ji«;  '.ie general result 

ia 

Lim  S.-p - -F(t-|z|/a) * (a/C )F(i-|z|/C ) 
Z-*oo 

and that equation (3 = 2(\) is valid as Z —•• °° a3 well as for R —**0: and o 

thus, it is  valid as (Z./2R )—}°°  in any nay through real values» 

While the preceding argument is satisfactory from an intuitive point 

of view, it is open to some mathematical objection a3 a result of ex- 

changing the order of several limiting processes.  In addition, if the 

limiting value of t/z is greater than l/b, the double series is always 

properly divergent over part of the integration contour. A somewhat more 

satisfactory argument can be made directly from equation (3»17) and will be 

considered in the next section. 



h.    THE TRANSFORMATION OF THE FOFWAL SOLUTION OBTAINED 

FOR PULSE TRANSMISSION ALONG A ROD 

The successful transformation of the formal solution obtained for 

pulae transmission along an infinite plate into a form which is closely 

related to the considerations of geometrical optics, leads one to con*1/l*r 

the possibility of carrying out a similar transformation upon equation 

(2.28) which expresses the complementary solution for the similar case of 

pulse transmission along an infinite rod. 

In so far as mathematical formalities are concerned, one might Just 

as simply consider the more general expression 

J» . (1-;bV)2 
Z2C

    (2n)2l 
u 

oo^tT p oe 

-se+tTv/- 96 

«* 
(2V+ D2sVag(s) J^(hRo) J^ (kR^^3^ ^     (4#1) 

b4h3R£)AJ)(h, k, R) 

T > $ > 9 

whereAy(h,  k,   ft ) is given by equation (2.19). 

This expression reduces to equation (2.28) when ~j)   - 1/2, and to 

equation (3.17) when -jf   - 0. More generally, when 2l)   is a positive 

integer, this expression is the solution of the similar problem in a hyper- 

space having a total o.f (2'P  • 2) space-liko dimensions, and {2"P   • 1) of 

these space-like iiraer.slons making up the hyper-cylinder radius. 
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By expreesing th« Besael functions of the first kind in terms of 

those of the third kind according to the equation 

J^j(2) - (i/2) [Hv (») •   Hi (*)] U.2) 

where     M-j/8)  m<*       fM?*)  are ^e two N«8ael functions of the third 

kind,  one obtains the relation 

vW»*o> J>v^kR
0) (H^hR> ^^>R0))(H^A(^0)-H^^0)) (4-3) 

A^(n, k, ao) ^*V, k, RO) (1 - Wl)(i - w2) 

• 
where 

/(y (h,  k,  B ) •   /f^/h, k> RJ 
*1 * *2 = ~  IfMtJ—~     —~ 

A'^h' k' Ro> 
iU-L) 

A^(h, k, R ) 
12 " ^)(h'  k,  RQ) 

and 

7»",>l) ? 5   o   i_jf"»> ijf*) 
Ay   (h, k, RQ)  - (k2 -Y2

)
2
 rU^(hR0)H^L(kR0) 

b"R •• * ° 
0 

2 I   i(m) U^ - w hK n^wy n^ (krv; 
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With the aid of the identity (3«25)» it ie easily shown from equation 

U.4) that 

_.i   _. i 

*1  " w2 

Wl ~ *2 

n„»n 
fV) 

n2-0 
n—n2»n_ 

(h, k, RQ) (4.6) 

where 
fen, 

Qnin^
h» k' Ro> 

V""* (Vn
2-^

)l(-1)q 

Z » (n.-q)t(n_-q)lql 
q-0    x    * 

v ^y (h, K, Ro)      ^  J 

^(h, k, Ro)J    LA
ly (h, k, Ro)J 

-n,-q r 

JW 
$! (h. *> Ro) 

/i^(h, k, RO) 
(4.?). 

Thus, employing the aeries expansion (3«2i*)> one obtains the reault 

(4.8) 

n,-0 n2-0 

which is readily substituted into equation (4<3)  and rearranged slightly 

to obtain 

§ jLyXhR ) Jj^,(kK  )        ^ f^ n,»n,\.i(i)j 
^~-^^-~^- -   /        /    , (-D   1     ' W   „  (h,   k,   RJ 

A^(h,  k,  R ) 
U.9) 

n - -0 n „ *0 
i. ^ 



u. k 

where 

vv       °     A$\h, k, R )    Wnin (h, k, R ) 
2 ° 

.feV^^Q^ (hfkfI) 
/Mh,  k, R ) ^-l.iy.^ 

»V v '    o 

(h,  k,  R ) 
"    /$*}<~h.   k,  RQ) * "iV1 

^V/'h»   k>  RJ 1    '  2 

(4.10) 

QCW 
(h, k, R ) -0 when either or both of the n,n„      o Y*2 

Integers, n, and n„, is -1. 

By using the same methods as employed in connection with the series 

(3.28), it is readily established that the aeries (A-7) and (L.B)   are 

absolutely convergent if 

\l$fih,   k, Ro)| > |A^(h, k, Ro)| • |/Jj^(h, k, Ro)| 

(4.11) 

• | Ay (h, k, R )| 
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This absolute convergence and its uniformity rare readily studied 

with the aid of the asymptotic expressions for Beasel functions of the 

21 
third kind which are valid for large values of z: 

Q. N.  Watson,  op.  cit.,  pp.  194-224. 

CO 

rCw~(^Wfr-wa/a r-(l1-L^*--i 
-n <, arg z  < 2n 

(2iz)m 

00 (4.12) 

fee"1' r(>; - • * 1/2) (2i2>31 

-2TT <^ arg  ?, <C n 

Since z is  either hR    or kR  ,   it  is obvious  from equation  (2.32jthat 
o     o * ' 

when R ^> 0, Im(s) is sufficiently large and positive, and y is real, the 

leeding terras in the above asymptotic expansions will become dominant and 

the simple expressions 

|x| > > IV-iAl 

-2n < arg z < n 

will be useful.  It is readily ahown t,h«t. 

i c, j £ M      -n/2 < arg z < 3"/2 

i fc^ I — K -JIT/2 < arg z<- rr/2 
v i;  -   ; 
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where 

M - <n/2)   (iVtlAl/UI) eC|V^l/A|/U|) (4.I6) 

However, an examination of the range of values of hR and kH shows 

that it is necessary to use these sirple expressions over the interval 

0 <arg z<.n and a more critical examination must be made of the ex- 

lA**) 22 
pression fcr MjKz).  Applying the continuation formulae  for the 

22Ibid., p. 75- 

multiple valued Bessel functions of the third kind to equations (4.13) 

and (4.14)>  one readily finds the result 

1^1 £*•   2(1>M)   jco8Vn|e-2Im(z) u>17) 

3TT/2 <  arg z < TT/2 

Since |z|~ =.|lra(z)|~ , it is obvious that |C/| and | ^j have upper 

bounds which are independent of Re(z) and are monotono decreasing with 

the limit zero as lra(z) increases through positive values to °°. Thus, 

since a > b, equation (2.32) gives Im(z) ^(R /a)lm(s), and this implies 

that bounds independent of the real variable y and Re(3) can be found 

which are monotone decreasing to a zero limit as Im(s) increases to &> 

through positive values. Thus, if Im(s) is chosen sufficiently positive, 

equation (4.11) is equivalent to equation (3-30), and the series (4-7) 

and (4-S) will be uniformly and absolutely convergent for Im(sj^.6 where 

6 is positive and-* oo    as ; v| -? c,°     and'or R —>  0. 
o 
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It is unfortunate that the similarity of the aeries (4»7) and (4.8) 

to the aeries (3.28)  and (3*29) ia not in general capable of much greater 

extension than this similarity of convergence. Whereas, each term of the 

aeries (3»28) and (3*29) is a single valued function of h and k having a 

finite number of pole8 and an exponential behavior at infinity, the corre- 

sponding terms of the series (4.7) and (4.8) have a finite number of poles 

and the same type of exponential behavior at infinity only if -cr«<arg (h) 

•«=n and -rr < arg (k)«*LTT and are, in general, multiple valued functions 

of h and k and have quite different characteristics when arg (h) and/or 

arg (k) lie outside the above open intervals. The only exceptiona to this 

difference in behavior occur when jf has such a value that sin })n  • 0. In 

these exceptional cases the terms of the series (4*7) and (4>8) are single 

valued in h and k and differ in analytical nature from the corresponding 

terms of the series (3*28) and (3-29) only in the number of poles which 

increases as \~j)\   increases,  when y  • 0 these two pairs of aeries become 

identical. 

In the contour deformations employed in Section 3 in connection with 

the transformation of equation (3»38) into equation (3»54)» arg (h) and 

arg (k) are required to sweep through the range of avlues from 

- tan" [z/2(n,+n2)R jj ton • tan ~ Jz/2(n,*n2)R ~] where (*/2R ) is 

positive and the inverse tangent lies in the first quadrant. Thus, the 

values arg (h) - rr and arg (k) - n are swept over in the process, and it 

cannot be employed in connoction with the term by term integration of the 

series (4^9) for ein '•Jrt ji 0 as the changes in the behavior* for Large 

values |h| and jk| make the integrals over the defottiued ccnff    .,-o oroperly 

divergeiit. 
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Some relief from this difficulty is available as it is possible tc 

obtain a second series based on the relationship 

J»<«) --a/2) [e2""1 hCu) • H^ue-2*1)] (4.18) 

which is satisfied by the Besael functions of the first kind and the 

multiple valued Bessel functions of the third kind.  Thia series may be 

derived by the same processes as the series (2*.9) cjid will be written as 

_vW".> vW-V . f f ^Vzyj*' (h, k> Ro)       u.19) 
A \f.      ,  „ \ /  i /  i n,n-       o 

I 

n,-0 n^-0 

The numbers yV   (h, k, R ) are easily found by repining the .   Ti-. n,j      o 

functions | •-.;(*) which occur in 1/V   (h, k, R ), that is with z * hR 
'   'v nln?      o o 

or kR , with the functions t '    f(>)(z6""" )• This series is again 

uniformly and absolutely convergent for Im(s) > 6, and all values of Re(s) 

and real y. However, whereas the asymptotic behavior of the terms of the 

series (4-9) 13 given by 

Wn^2 * (-l)n?'[(Vn2)/ fx * (n^2)/ f2] Pn^ (f^) 

(4.20) 

.   ei[ru(hK *Vn)   •  n0(kB +^nl] *  t,       l       o 2      o 
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for    jhRj   > >  iV|(|V|+l) -n^arg (hRQ)^n 

and    |kRJ   > >|V|(|y|*l)        -n < arg (kR) < n 

the asymptotic behavior of the terms of the series (4*19)  if given by 

Wxn2 •   (-D^OV^)/ h *  (»l-2>/ <2]    Pnxn2 < V<1> 

(4.21) 
9 ei[n1(hRo->M)  • n^kR^njQ 

for    |hRQi > >    |V|(|V|*1) 0 <<arg (hR )< 2n 

and    |kRo| >^   |V|(|V |*1)        0<arg (kRQ)-<2rt 

Each of these series (4«9)  and (4.19)  may be employed over half of 

the range of integration to yield 

s£c " IZ   22  CH*n(*0,Z,t) (4.22) 
n.-0 n?-0        1 2 

where the serxea have been integrated term by term and 



f~\ &*+C"C 

C   „  (R  ,Z,t)  - -i(2V*l)(l~2b2/a2)2/(2n)2 

nln2    ° 

4.10 

(-D V
n2 

_ eo + i>* 
00 

2s3y2ag(s)   Sk,{*)/ ^-ifsWZ) 

73T- WWhl k' R°)6 * (4.23) 

PC      3 2 

• VV, „ (h, k, R )6 UsWZJ   dy 
AA n, n~ 

i 2 
U- oO 

ds 

Upon changing to the new variables y,  h,  and k definod by  the system 

of equations (3.39)»   it  is readily found t>- *   the contours for the y inte- 

gration can be deformed to yield 

M 
»   „  (R^*Z,t)  - -i(2>?*l)(l~2b-/a-)V(2n) 
nln2    ° 

(-D V°2 

J. ^^it 

3 --2 
2s   y ag(s)x|/fV)      _   _ WtJSyt 
—r—=  W       (sh,sk,R ) g-i«Ct-rZ)    ^ 

b^ h3R nln2 

Art. n 

(4.24) 

2s3 y ag(s) U/Wf /   _   _ -_«./* -Z5 
~n    Vtf n    8h,sk,S )6  iB(t-^Z'     dy 

b4 h3R nln2 ° 

in,ii2 

ds 

J 

•?i + where the contour   f starts at y •> 0 and runs along the positive real 
•nln2 

axis until it meets th* contour   j}    ^    ul Fig.   (3°1)       It then goes to eO 
Pin2 
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along the branch of the contour T    which lies in the upper half of 
nln2 

the y-plane. The contour Y"      i« the mirror image of r in the real 
V2 nln2 

axis, but it begins at oo on the lower half-plane branch of P and 
nln2 

ends at y » 0. 

Difficulties are again encountered when n, « 0 ae the contours may 

touch the singular points y • -(l/a)» -(l/b), and -(l/CD) at which one or •ft 

more of the polets  of the integrands in equation (4.2/*), considered as a 

function of s, may recode to oo. Stated in other words, when Im(s) is 

sufficiently large and positive, the integrands considered as i function 

of y have a finite number of poles (the number dependent on l) ) clustered 

about the branch points y - -(l/a) and -(l/b) and one in the Immediate 

vicinity of each of the points y • -(l/CD). These poles approach the 

points mentioned as limits as Im(s) —^ °° , and by choosing 6 sufficiently 

large, the contour deformation cen ba accomplished without passing over 

these singularities so long as n.. ^ 0. The integrals with n. • 0 cannot 

be handled in this way with a finite value of 6. Various methods of treat- 

ing these integrals suggest themselves-  The most obvious of these is to 

represent these integrals as tho limit of the more general integrals as 

nx -» 0. 

Substituting . .e value of g(s) from equation (2=25), and inverting 

the order of integration, one obtains the result 

Ln,n (R0f"#t) -  I  Mn n (R0»z,t-t ) F(t )dt      (4.25) 
'12 |       '1 '2 
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whore 

&) 

r 
An n (R0.2,t-t')  - -i(23>*l)U-2b2/a2)2/(2?r) 

T*2 

CXH-tT 

n.*n9 

u-oo + t'T 

b** EPR       Rl"2 ° 

0 

i - *     b   h 

dv 

* *^R 12 
ds 

(4.26) 

• 

"ln2 

and the finite limits on the integration over y are justified by the 

»  _ 
vanishing of the integral, over a for t-t •< t   . This vanishing of 

the integral over s in turn follows from the fact that the integrand is 

regular as a function of s for any fixed y and Im(s) ^ 6 when t-t ^-  t 

The integration contours for the variable y can now be deformed so aa to 

avoid the necessity, when n.. - 0, of touching the point3 y • -(l/a), -(l/b), 

and -(l/C_) except when one of these points must be the terminal point on 

the contour. In such a case a limiting process aaiy still be required. 

Although the numbers/^   (R »Zst-t ) are easily ahown to be zero 
, "ln2 ° , 

for t-t *C (n,/a + n„/b)R , they do not appear to be zero for t-t "< t 

except for the situations when sin^rr • 0.  In these special cases the 

two series (4.9) and (/+. 19) have identical terms, and the Bessei functions 

can be expresned in terms of algebraic functions and exponentials. Thus. 

equation (4.26) takes the form 



jv) 
An n (V2'1"1')- -i(2V*l)(l-2b2/a2)2/(2n): 

12 

ir y -a    -prt)   , -     -        ,r 
-T—7— (sh,   sk,  R )C 
b^h3R Sn2 

oo f £ T 

J_ CM • *- r 

4.13 

-ia(t-t-.f        "> 

dyds 

ain^n - 0,"E> 6 

(A«27) 

T^) -     - where  /    is a rational function of ah. ak, and R , and the contour 
nln2 

of integration over y may be •   or an/ other curve joining the point 
nln2 

y   (t-t ) to the Doint y   (t-t ) which does not cross the cuts in the 
nlV nln2 

cut y-plane a3 3hown in Fig- 3«1«  Since the integral over s vanishes for 

t-t-<t   , it is obvious that M   (R ,2,t-t ) - 0 for t-t < t 
rln2 nln2 ° nln2 

and may thus be associated with the same type of geometrical path as the 

impulsive response f\        (R ,Z,t-t ) was in Section 3 whenever sinv'rr - 0. 

The failure of the correspondence between the geometrical paths and 
AM  , 

the Impulse responses, M   (R ,Z,t-t ), when sin n f  0, is rather n,n,, o 

disconcerting since the asymptotic properties displayed by equations (4.20) 

and (4.21) would lead one to expect these impulse responses to be associated 

with waves which have traveled the distance 2n,R as a dilatational wove 1 o 

and 2n„R as a rotational wave regardless of the value of"]) . 

The failure is readily tracod to the integration over y in the interval. 

0 — y ~ y,   which occurs in the two integrals appearing in each of the 
nin2 

equations ('+'2h)  and (4*26) when the contours "P*       and V"        are employed. H ' Jn,n...     An,n„      K * 
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When aijn>>TT - 0, the contributions from this part of the range of inte- 

gration are equal from the two integrals but opposite in sign and cancel 

out. When sin)) TT <f 0, the contributions are unequal and do not cancel 

each other. 

A study of the steps taken in obtaining equations (4.24) and (4.26) 

reveals that the process can be generalized to the extent that the contours 

r+  and P    do not have to be terminated at y - 0, and could have been 
nln2      nl 2 

terminated at any other common point y lying in the open interval of real 
c 

values -(l/a)<y <(l/a). This follows from the uniform and absolute 

convergence of the series (4«9) and (/*.19) to a common sun when 

Im(s)> 6 and y is on the real axis in the interval -(l/a)< y <(l/a). 

Terminating the contours at such a common point y will in general altar 

CM/ AtVJ t 
(R „Z,t) and A  "     (R ,Z,t-t ) but will not alter 

n.n* o       ' n.n„ o 

S^X„ as the sum of the changes due to altering the contours T1    will 
ZZG nino 

exactly cancel the sum of the changes due to altering the contours i 
n n 

(V) — 
for any value of V, Thus, in any calculation of S~7r  we may pick y at 

any convenient point on the above interval.  Since the minimum group-transit 

time on the thus generalized contours P    and P"  will in general 
: nin2     nin2 

be a function of y , this choice may be used to advantage. 

For example noting that 

00 

s$r -/L,  D '(Rrt>Z,t) (4,2fi) zzc 
n*U 



where 

M 
Dn (Rrt,2.t) - n2    o 
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poo 

O    (R ,Z,t-t )  F(t )dt (4.29) 

and 

D  (R ,z,t-t ) - L-,  An n (R .z,t-t ) (4.30) 
n2    ° n^O        nln2    ° 

frfl. — Pi W        1 
we find on letting y ~~?   U/*) - 0 that Q (R ,Z,t-t ) is 0 wh«n 

, C n2 ° 
t-t -<C. t    where t    la given by equation (3-52).  It is thus apparent 

Mil} V  Iln 

that although the correspondence with the general geometric paths is in- 

complete for sin^n / 0* it is ali-ys possible to split S__„ up into parts 

3m which correspond to direct dilata^ional and critical angle path3 such as 

are observed for rods. 

The differences in the behavior of the series noted above lead one 

to consider the asymptotic properties of S?7„  as (Z/R ) ~^ °° . This 

may be accomplished di_ectly from equation (/v»l) 

A.8 in Section 3» it is convenient to take F'(t) • l(t) where the unit 

step-function is defined by equation (?.6?). The corresponding transform 

g(s) is given by 

6\ "I (i/3) (4-31) 

Substituting this vclue into equation (,'*.l) and changing from the 
1     1 

variables y and 3 to the variables y and s defined by 



* 

r   - z r 
8      -   2   8 

4.16 

(4.32) 

one finds 

,e*1 
'zzc 

? - 1  ?      « 
(l-ar/O" 

(2n)2 

poatiT" A «° 

- ©s 

2;2V.l)(8V)2aJJ?^(h,Ro/Z)J>?^(k,Rc)/Z)e"&,(t/Z) 

b4(h')3(R0/z)2iy(h',k',Ro/z) 

•Di 
• dy da 

(4.33) 

wher* 

(s'/a)2 - (y')2 

-,1/2 

(s'/b)2 - (/) 

ni/2 
2 

(4-34) 

It is then readily shown that. 

lim S ZZC 
(z/RQ)-y. 

(2n)* 

oo + i-T      p<7<> 

<jo + i T     J_ oo 

2a 2a 

'2 '2 '   2 '2 (a  )     - (ay  ) (B )    -  (cp y  ) §V&,( 
-J   dy ds 

(4-35) 
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where cy is the positive root or" 

-2(V*1) - b2(2V*l) 
(cy)' - 2b' 

*{!>+  1/2) - 2b' 

(4.36) 

2    2 2<T}> • 1 
or (c)f)    - 2b   • 

2<ry>  «• (l -<r) 

(when expressed in terms of b» V , and the Poissor. ratio, (Tt)  and it is 

assumed that t increases with Z in such a way that (t/Z) approaches a 

finite limit. 

The integration is readily carried out in term* of residues with the 

W aid of Jordan's lemma to obtain 

Lira s£?c - ~l(t - |z|/a) * (a/cy ) l(t - |z|/c>,) 

(Z/Ro)Voo 

Since we are dealing with a linear system and such step-functiona as 

l(t) may be combined in a linear fashion to obtain a suitably arbitrary 

function F(t), it is obvious that the general result is 

Lim 3ZZC - -F(t -• |Z1 /a) • (a/c^) F(t - |Z|/cp) 

(Z/Ro)~><« 

and that 

Lim 3Z2 - Lim (SZ2p - 3^) - (a/c-p ) F(t - |z|/c„ )      (4-37 

Z (z/R0h><* (Z/Ro)^*« 

for any real v&luo of Cy- 
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This result implies that at large values of (Z/2R ) the disturbance 

appears to have travelled the entire distance Z with the speed Cy . It 

i« easily shown from equations (4-36) and (2.30) that a £ fcy) i. 2b 

for all real valuea of -)) y>  -(1/2) and values of Poissons ratio (Tin the 

range of physical stability 1/2 £ G~ Z. -1. In addition for <T - 0 one 

o   2     2 
finds a • c  - 2b , and the eoapleresntary solution vanishes identically 

as would be expected. 

For ->) - 0. equations (4«36) and (4.37) are identical with equations 

(3.19) and (3-20) respectively. For V - 1/2 we find 

2    2 3a* - 4b* 
(cy^r 5 r-- 2b*(l • *) (4.38) 

a - b 

as the asymptotic speed of the disturbance in a cylindrical rod. This 

23 
speed is exactly that predicted by Rayleigh's "* approximate theory for 

23 Lord Rayleigh, Theory of Sound (Cambridge, 1877), I. pp. 242-251. 

thin rods. 

The simple expression, valid for all real values of Cy, obtained 

for the asymptotic properties as (Z/2R ) —> <*? , leads one to reexamine 

the processes leading to equations (4.26) and (4.2?) with the idea of 

modifying these processes so as to obtain s segregation of the disturbance 

into parts which will correspond exactly with tha geometrical paths of 

Section 3 regardless of the value of "))  » 
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Having found the equation (4.27) which is consistent with such a 

segregation whenever sinVtr - 0, it is natural to consider the possibility 

of extending these results to other values of ")) by interpolation between 

these values cr some other such process of generalisation. 

The integration over s in equation (4*27) is readily carried out by 

evaluating residues with the aid of Jordan*s lemma at \2l) *  l| poles of 

order n, • n2 • 1. The results so obtained will give quite complicated 

combinations of exponential and algebraic functions which must then be 

integrated over y-.    In order to point out the fruitless nature of any 

effort at interpolation, it is only necessary to consider the values of 

A   (R »Z,t-t ) obtained from equation (4.27) for the initial rise 
V2 ° 

*% Just after t - t • t°  . Since the initial rise is controlled almoet 
& nln2 

entirely by the Fourier components of high frequency, it is convenient to 

expand  I    (sh, sk, R ) in inverse powers of s and use the leading 

term r.ly in getting an approximation to the behavior in the neighborhood 

of the initial rise time. This is easily accomplished with the asymptotic 

formulae (4.20) and (4«21) which are identical when sinV n - 0. 

The result may be written as 

AfV) , V(n,*n?) . , 
An n (*ft*Z,t-t ) - (2V • 1) (-D        An _ (R ,Z,t-t )   (4.39) 

t' • t°    < t<t! • t°     • e 
nln2 V2 

where 6  is a small positive number, and /•*,   (R ,Z,t-t ) ie given by 
n12 ° 

- equation (3.63). 
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From a physical point of view, the main feature of equation (U-39) 

is the phase changing factor (-1) . There appears to be no way 

of generalization consistent with experiment in the case y)  • l/2, whici en 

has been investigated.  Experimentally it appears that the initial rises 

of f\        (R ,Z,t) are of the same sign as that of the direct, dilatational 

wave and anpear for all values of n» just as would be expected of a plate. 
l)(n1>n2) 

If one attempts to generalize by replacing (-1)   x    by 

cos £ (r», * n„)')}n'[]> rises could only be found for even value3 of n„ 

whan n, - 0 and 7) - 1/2, and these must oscillate in sign accordingly 

as n~ increases through such even values^ 
l)(n1+n2) 

Since the same factor (-1)   "    is also contained in the neglected 

terms, it is apparent that some other approach is required when sinjAr f  0. 

However, the nature of thi3 approach is not immediately obvious. 

The complementary solution for l) -  1/2 can be calculated from the 

equations developed in this section, but the effort and time required 

would be prohibitive. 

The failure to obtain a solution like that for the plat*;, in which 

individual terms of the series correspond to each of the various types 

of geometrical paths, is certainly not to be construed as clouding the 

significance of such paths or the existence of the corresponding wave 

trains, for these *ave trains, interpreted according to the principles of 

geometric optics, have been used in geophysical prospecting to map all 

kinds of curved surfaces in a consistent manner and in agreement with data 

obtained from well cores.  The particular mathematical method employed has 

simply been inadequate to accoapli -':•  tr.e split-tin,- of  the overall -Jis- 

turh'ince into senara* (.•  ni «?•:<? L« ef i*:-*  desired tyne.. 
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The mathematical methods ware adequate for the cases in which 

sinVn - 0, as equations of the form 

!  / \  r-, /-v. \U?-[     i     , z:i(z - nr( V *  l)/2) 

exist where 

Py('i) 
U^ V2i " i/2 (!>>• 1/21 - 1/2 • m)l 

L—i 
m V\l)  *  1/21 - 1/2 - mj! ml (2iz) 

m 
f |   IT 

when >^ is a positive or negative integer or zero-  The use of these ex- 

pressions in the preceding analysis gives equation (4«27). 

When 7^ is not a positive or negative integer or zero, there appears 

to be no function p-^(z) satisfying equation (L.40) which ha3 the property 

that the ratio p .(-z;/p_»( z) is single valued and regular at infinity 

(i.e. a rational function). However, it is in general possible to re- 

present the Bessel functions of the first kind as the limit of a sequence 

of terms of the nature of equation (4«40) namely 

• . U,N) 
^•J+v.(*) • Lim   ^Vf>i ^ 

N—» 00 

ik-h.2) 
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where 

L U.«) 

•CU)€"i(2",t'I*1>/2)] 
U   is  ail integer,   and 

N 

(u • 2n • 1/2)    U • n • 1/2)(-l)n 

• .  p \z) U-U) 
nl T(y> •  1 - A  - n) r<V   * n •   3/2)     u*^ 

in which the ratio p. (-z)/p'* (z) is obviously a rational function. 

2.L. This infinite process is easily obLained from Sonine's expansion 

**G. N. Watson, op. cit-, pp. 139-li+O. 

oo 

Jv+;i(z) - (z/2)
7^^ T{V  - M * 1)2, 

(M * 2n • 1/2) Tu' • n • 1/2) 
• 

nt T(y • 1 - u  -  n) P(>/ • n * 3/2) 
J^2n**(z>  <*'*» 
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which is  valid when p. * l/2, ~j)   *  l/2,   and   jj" M  are no^ negative inte- 

gers.     One merely defines     \jj *     (z)  as the  sum of the first N terms of 

the above series with the stipulation that p. is an integer *nd  applies 

equation (/4.4O) to each term sc considered. 

Although thesr processes  converge quite  rapidly,   one  finds that 

Lint        p    (2)   does not  in general  exist.     Exceptions occur when  ~j),   as 

well   H3 ut   is  ->:i ..ntoger and   y  2^  (i.     In these cases  the sequence termi- 

nates,  and one finds 

P.JJMU)   - P„ («) >>21M, N >  ^  - M (4.46) 

The possibility of representing S„„„ aj the limit of a sequence 

—i~V a *i) 
based on the abo^e infinity sequence suggests itself.  Defining S77' 

by making the substitutions 

3 (if)        * q(>\M,N) or zc      zzc 

1         .  J(M,M) 

J |(M-1,M) 

into  equation  (4.1)  ana expanding the right-hand member in ascending 

.   r2ihR /-2ikK 
powers of  C o and   fc o,   one  readily obtains 

go oQ 

"   77/^ A—     — • * * — -• 

n  -0 ryO  „ 

ft-!0 

^   Ai^V.Z.t- 
nln? 

,,-t')F(t' 
0 1  ... 
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where 

A^-^tH.Z.t-t') - -i(2VM)(l - 2b2/a2)2(*T)2 
r <K>+ i-  X" 

u'- c» -+ i. X" 

oV2<t-t') 

nln2 

2s^2a -WV^N) 
~PV>M,N;(sh,Sk,R 5 e"15^"' "tnln2} u,.,, (..,9) 

"ln2 b^3R 

in v.hich I **/* * '(sh,3k,H ) is a rational function of each of the vari- 
_nln2 

ables sh,sk. and R_.  It has poles of order n, • n * 1, considered 

as a function of s, and the number of these poles is dependent upon y , p., 

and N.  It is easily demonstrated that /"V >U''    (R ,Z,t-t ) - 0, for 
nin2     ° 

t-t -<• t    and for any value of^ , and that this result is compatible 
nln2 

with equation (4-27),   when 3inV TT » 0, in the sense that 

A (7>,;x,N)/p 
1     ' ri n 

N->co     12 
o /   \ 0, n.-.       (_• (4.50) 

as a result of equation (4>46)» 

If this process converges when sin -j? n /  0, equation (u.50) would be 

a much more satisfactory definition of !\ (R .Z,t-t 1 than that pro- ^n1n2  0 

vided by equation (/•,2b), as this impulse response would then always corre- 

spond to the appropriate geometrical path. 



Although the integration over 3 in equation (/*.49) couid be carried 

out formally in terms of residues, the number and location of the poles 

dnpend3 upon N in such a way that the author has been unable to evaluate 

the limit involved in equation (i*.50) or prove that it exists. The physical 

role oi' the geometric paths leads one to expect the limit to exist, but 

there is very little hope of reducing the calculation to processes of suf- 

ficient simplicity to warrant further consideration in this paper. 
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5.  CONCLUSION 

A theoretical investigation haa been made of the propagation of 

elastic pulses through roda and plates. This investigation is by no 

means exhaustive as it has been limited to a plane longitudinal drl/e. 

Tr-ans%-6rse drives r.:id point-source drives are equally interesting from 

the point of view of making physical measurements of elastic constants, 

a« ar« the parallel problems involving nor.-isotropic media. 

In the case of the plate, these mathematical methods are capable of 

treating the transverse drive, point-source drives, and the non-ieotropic 

media with minor alterations. The author intends to treat these and certain 

related geophysical problcraa in future papers. 

Wr In the ca3e of the rod, it is clear that some other mathematical tool 

must be applied to the much more complicated functions wi ich »:-e involved. 

The primary objective of this research, a quantitative wave treatment of 

the experiments reported by Hughes, Pondrom, and Minis, has not been com- 

pletely attained. At present the be?t approach is to consider the effects 

that appear in connection with rods in terms of an analogy with tho9e that 

appear in connection with the plate. This is, at beat, only a qualitative 

analysis. 

For a longitudinal drive on a plate, it has been shown that the 

boundaries of the plats produce reflected or echo wave trains which corre- 

spond to each of the paths predicted by the methods of geometric optics. 

It is found that the critical anglo patho should be the most evident 

experimentally as the associated wave '(.rains have a much more abrupt start. 

- 
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It is further found that these wave trains interfere with one another in 

such a way that, as the ratio of the distance of transmission to the 

thickness of the plate becnnes infinite, the entire disturbance becomes 

asymptotically a disturbance traveling with the velocity c which is 

classically the longitudinal velocity of propagation for a plate of zero 

thickness. These results are obtained independent of any assumptions re- 

garding the rr«qu.sr.c7  spectrum of the pulse. 

0y analogy, one should expect longitudinal drive on a rod to result 

in wave trains which correspond to each of the paths pre iicted by means 

of geometrical optics, but that these wave trains corresponding to the 

critical angle paths and the direct dilatational path will be the most 

easily detected. As the ratio of the distance of transmission to the 

diameter becomes infinite, interference of the above wave trains should 

produce the asymptotic result of a single wave train propagated with the 

speed, c. /_, found by Rayleigh for a rod of zero radius. It is also to 

be expected that the frequency spectrum, or shape of the driving pulse, 

is of no importance to the theory. All of the conclusive findings of 

Section t» are in accord with this analogy. 

The experimental observation of the various wave trains is complicated 

by the multitude of ways in which interference can take place. This be- 

comea particularly difficult when the duration of the driving pulse F(t) 

is greater than the differences between the minimum group-transit times 

of several of the various reflected wave trains. This condition existed 

in the experimental work reported by Hughes, Pondrom, and Mim« and ef- 

fectively prevented the identification of any wave trains except those 

corresponding to the iire^t dilatational and critical angle paths winch 
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correspond to the ccntoure P   . The more general paths corresponding 

to T with n, small but not zero generally give rise to slow starting 

transients as pointed out in Section '}.    However, as (Z/2R ) is made larger, 

these rises become more nearly like those corresponding to the critical 

angle paths and should then he mor * readily detected. Unfortunately, the 

minimum group transit times t   —* t    as (Z/2R )—• °° , and the 
nln2    ° n2       ° 

wave trains corresponding to the more general paths interfere with other 

wave trains under the same conditions that they give fairly sharp rises 

unless F(t) is sufficiently short in duration to avoid this interference. 

Th5s point is illustrated by Fig. 5*1 which is a  reproduction of the 

oscillographic traces for a cold-rolled steel rod 3.645 cm. in diameter 

and 5-08 cm, in length.  For this sample of steel, a was found to be 5880 

metera/sec, b was found to be 32^3*5 meters/sec, and the value .289 was 

obtained for 0~. 

The primary dilatational disturbance begins at point A, 8.69 Msec. 

after the start of the driving pulse, which had an appreciable amplitude 

for some U Msec. Since the minimum £ 

with the contours V       are given by 

—"O for some U ysec. Since the minimum group-transit times t   associated 

1° 

ro 
n.,o - (1/a) Z2 * (2n,R )2 

JL  O 
(5-1) 

93 the entire path is traversed as a dilatntional wave, we thus find 
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t°   /t° n, o      o o 

1/2 
1 •> (2n1Ro/Z)'' 

Confining our attention to t,     ,  we find 

tj J 8.69 - fl •  H.645/5-08)*! 
,7> 1/2 

or 

J> t? ,  - 10.696 Msec. 

Thuej  the corresponding train of waves would interfere with the direct 

dilati tional wave train over half of its length.    Ao n.   increases,   eorae 

of the corresponding wave trains would be expected to be resolved in terms 

of time but would not be expected to have a sharp enough rise to be de- 

tected. 

The obvious arrival at point B is due tc a critical angle path corre- 

spending to the contour P .. The arrival time t_ i9 found to be 18.61 

utec. after trie 9 ..rt of the driving pulse and is in agreement with calcu- 

lations based upon equation (3« 52).     The wave train  corresponding to the 

•—o minimum group-transit time t,,   ,,  which ia 21.23    usoc    as calculated  froji 
-i. i- 
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equations (3.i*6), (3-47), and (3.i*0), and thus it should interfere with 

the wave train corresponding to t« ,. 

These conditions become much aore aggravated as (Z/2H ) increases. 

Since th.' remainder of the rods considered have larger length to diameter 

ratios truji the one considered Above, it is apparent that there was little 

likelihood of identifying any wave trains except these corresponding to 

the direct dilatational and critical angio paths which always hav«> sharply 

rising initials. 

A more promising set of cirtr"' stances for the observation of the 

more general wave trains corresponding to the minimum group-transit times 

t    with n, / 0 can be obtained by either shortening the duration of 
nln2      l 

the driving pulse or by increasing both the length and the diameter of 

the rods tc be considered by a factor of approximately ten 50 as to get a 

—•o 
greater separation of neighboring values of t   . 

nln2 
The '•atter alternative is not. very acceptable to this laboratory as 

the fundamental reason for developing thiB method of measuring velocities 

of elastic waves was to get a system in which the rod-shaped sample and 

the necessary driving and detecting crystals could be placed in a small 

volume inside of a high-pressure chamber. Tnus, with one set-up, one- 

can measure the velocities of rotational and dilatational waves for various 

hydrostatic pressui-es and temperatures.  It is consequently desirable to 

pursue the former alternative, and efforts are now being made to red'--* 

the duration of F(t) and increase its amplitude so as to increase the 

number of arrivals capable of being identified. 
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The question of precisely what is being measurad in these experiments 

is closely tied in with the nature of tht driving pulse. If F(t) - 0 for 

t < 0 and ia non-zero for any short time interval, it is a well recognized 

fact that this function must be considered to have & continuous distribution 

of frequencies running from 0 to o«. All elastic materials, for one or more 

reasons, are expected to become dispersive as the frequency of a simple 

hartaonic disturbance becomes sufficiently large. Thus, the velocities a 

and b are complex functions of the frequency which is represented in the 

analysis of this paper by the symbol s. The velocities measured aro 

apparently those associated with the first arrival of an abruptly initiated 

disturbance or "wave-front" velocities. Paralleling the reasoning of 

Sommerfeld and Brillouin , one might say that the velocities measured are 

really the limits of a and b as s —> co . Such a statement is rather naive 

since the results of any such measurement are very likely to be a function 

of the sensitivity of the detecting mechanism. Without a complete and ex- 

perimentally acceptable theory of dispersion, one cannot say when the de- 

tector is sensitive enough to detect the very first arrival. There is some 

reason to expect that an extremely small part of the er.^rgy of an abruptly 

starting elastic disturbance is propagated with the speed of light„ 

In the absence of a complete theory of elastic dispersion, no exact 

description of the measured velocities can be given. One can only state 

that the measured velocities are the apparent "wave-front" velocities as 

observed with apparatus of specified characteristics.  It is to be expect-ed 

that ar. acceptable theory of dispersion will result from the study of the 

results of «i!^h experiments as these- 
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